
High Level Assembler for z/OS & z/VM & z/VSE

Toolkit Feature Interactive Debug Facility
User's Guide
Version 1 Release 6

GC26-8709-08

���

High Level Assembler for z/OS & z/VM & z/VSE

Toolkit Feature Interactive Debug Facility
User's Guide
Version 1 Release 6

GC26-8709-08

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
291.

This edition applies to IBM High Level Assembler for z/OS & z/VM & z/VSE Toolkit Feature, Release 6, Program
Number 5696-234 and to any subsequent releases until otherwise indicated in new editions. Make sure that you are
using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

IBM welcomes your comments. For information on how to send comments, see “How to send your comments to
IBM” on page xv.

© Copyright IBM Corporation 1992, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

About this book xi
Syntax notation xi

How to send your comments to IBM . . xv
If you have a technical problem xv

Summary of changes xvii

Part 1. What is IDF and how do I
start using it? 1

Chapter 1. Introduction to the Interactive
Debug Facility 3
Capabilities 3

Execution control 4
Symbol support 4
Typeover storage modification 4
Intelligent cursor sensing 5
Screen swapping 5
Record and playback 5
Customization - profile and macros 5

Where can I run IDF? 5
Environments supported 5
Limitations when debugging on TSO 6
Limitations when debugging on CMS 6
Limitations when debugging under z/VSE . . . 7

Chapter 2. Getting started with IDF . . . 9
Program preparation. 9
Program debug basics 9
Sample debug session on TSO 9

Sample program preparation 9
Invoking IDF 10
Invoking IDF with a TSO batch job 10

Sample debug session on z/OS 10
Invoking IDF with a batch job 10

Sample debug session on CMS 11
Sample program preparation 11
Invoking IDF 11

Sample debug session on z/VSE 11
Sample program preparation 11
Invoking IDF 12

Running IDF on a sample program 12

Part 2. Guide to using IDF 13

Chapter 3. Using ASMLANGX to extract
source-level information 15
Assembly requirements 15
Program build requirements 15

Building a module on z/OS 15
Building a module on CMS 15
Building a phase on z/VSE 15

Running ASMLANGX 16
Extraction file allocation on z/OS 16
Online language extraction on TSO 16
Batch language extraction on z/OS 17
Online language extraction on CMS 17
Batch language extraction on z/VSE 18
Which files to keep 18

Return codes 18

Chapter 4. Invoking IDF to debug your
program 21
Running IDF on TSO and CMS 21
Running IDF via TSO batch job. 22
Running IDF via z/OS batch job 23
Running IDF on z/VSE 24
IDF options at invocation. 25

1ADSTOP (CMS only) 25
AMODE24 | AMODE31 | AMODE64 (z/OS
only) 25
ASCII 26
AUTOLOAD | NOAUTOLD 26
AUTOSIZE | NOAUTOSZ 26
BCX | NOBCX 27
CKSUBCM 27
CMDLOG 27
CMPEXIT 27
COLORS | COLOURS 28
COMMAND 28
DMSO (CMS only) 28
EXITEXEC. 28
FASTPATH | PATH | PATHFILE 29
FULLQUAL 29
HEXDISP 29
HEXINPUT 29
IMPMACRO | NOIMPMAC 30
INVPSW | NOINVPSW 30
ISA (CMS only) 30
LIBE (z/OS and CMS) 30
LINE (CMS only) 31
LUNAME (z/VSE and z/OS) 31
LSMDEBUG 31
MACROLOG 31
MODE (CMS only) 32
MODMAP | NOMODMAP (CMS only) . . . 32
NODSECTS 32
NUCEXT (CMS only) 32
OFFSET 33
OLDBREAK 33
PASSPGM 33
PROFILE | NOPROFIL 33
QWDUMP. 34
RISK 34

© Copyright IBM Corp. 1992, 2015 iii

RLOG 34
ROWSTYLE 34
SBORDER 35
SCDACTIV 35
SELFNUCX (CMS only) 35
STOPNOP | NOSTOPNP 35
STOPSTMT | NOSTOPST 36
SVC97 | NOSVC97 (z/OS only) 36
SWAP 36
SYSTEM (CMS only) 37
TRACEALL 37
TRANS (CMS only). 37
UNFTDUMP 37

Initialization of general-purpose registers (GPRs) . . 38
Initialization of floating point registers 38
Initialization of access registers 38
The PATH, FASTPATH, and PATHFILE options . . 38

Using the PATH option 39
Using the PATHFILE option 39
Using the FASTPATH option 39
Excluding called subroutines 39

Chapter 5. Debugging programs on
z/OS 41
Data set naming conventions 41
Optional data set file allocations 41
Breakpoint method selection (TSO) 41

SVC 97 breakpoints. 41
Invalid opcode breakpoints 42
Specifying the breakpoint method 42

Breakpoint method (z/OS batch) 42
How to specify parameters for your program (TSO) 42

The COMMAND option (TSO) 43
How to specify parameters for your program (z/OS
Batch) 44
Loading programs (TSO) 44

File allocation requirements 45
The TSOEXEC command 45

Programs requiring environmental setup (TSO) . . 45
The COMMAND option 45

TSO batch and z/OS batch job requirements . . . 46
Dynamically loaded programs (TSO) 46
Programs invoked by REXX (TSO). 47
ISPF applications (TSO) 47
DB2 applications (TSO) 48
Causing a break-in event (TSO). 48
Your program's defined limits 49
Programs performing full-screen I/O (TSO) . . . 49
Applications that use z/OS subtasking 50

Chapter 6. Debugging programs on
CMS 51
Program preparation on CMS 51
How to specify parameters for your program . . . 51
User-area programs. 52
CMS transient programs 52
CMS nucleus extensions loaded explicitly 52
Self-loading CMS nucleus extensions 52
Programs requiring environmental setup 53

The COMMAND option 53

Dynamically loaded programs 54
Programs invoked by REXX 55
Programs declaring interrupt routines 55
Causing a break-in event 55
Your program's defined limits 56
PER versus non-PER mode 56
Programs performing full-screen I/O 57
Using a message-trapping tool 57

Chapter 7. Debugging programs on
z/VSE 59
Data set naming conventions 59
How to specify parameters for your program . . . 59
Loading programs 59

JCL requirements 59
Dynamically loaded programs 60
Running with subtasks 61
Running with CICS. 61
Using ASMIDF to debug a CICS/VSE application 61
Debugging STXIT code 62
Causing a break-in event 62
Your program's defined limits 62
Programs performing full-screen I/O 63

Chapter 8. Windows, PF keys, cursor
positioning, and other operational
details 65
Windows 65

AdStops window (CMS only) 66
Additional Floating-Point Registers window . . 66
Break window 67
Current Registers window 68
Disassembly window 69
Dump window 70
Entry Point Names window 73
LSM Information window 74
Minimized Windows Viewer. 74
Options window 75
Old Registers window 76
Skipped Subroutines window 76
Target Status window 77
Some examples of actual screens 77

Specifying a window 79
PF keys. 80
Command record and playback features 80
Address expressions 80
Addresses displayed by IDF 82
Arguments and cursor positioning. 83

Chapter 9. Source-level debug
additional capabilities 85
Controlling single-stepping your program 86
Displaying and changing items 86
Variable expressions 87

Variable scope 87
Variable names 87
Simple variables 88
Aggregate variables 88
Dot qualification. 88

iv HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Based variables 88
Array indexing 88
Substrings 89

Displaying variable names 90
Displaying CALLERS 90
Source level support 90

Chapter 10. Commands and operating
procedures 91
IDF commands cross-reference 91
ABEND (CMS and z/OS). 94
ADSTOP (CMS only) 94
ADSTOPS (CMS only) 95
AFPR 95
ALARM 95
ALET 96
APROGMSG (CMS only) 96
AREGS 96
ARRAY 97
AUDIT 98
BACK 98
BASE 99
BINARY 99
BIT 99
BOTTOM. 100
BREAK 100
BRIEF 102
CALLERS 103
CHARACTER 104
CHECK 105
CLOSE 106
COLORS 106
COMMAND 107
COMPACT 107
CREGS (CMS only) 108
CURSOR 108
DBREAK 109
DETAIL 111
DISASM 111
DOWN 112
DROP GLOBAL 112
DROP MODULE 112
DROP SYMBOLS 113
DUMP. 113
DUMPMODE 114
EPNAMES 114
EPOFFSET 115
EXITEXEC 115
EXLIMIT 116
FIND 116
FIRST 117
FIXED 118
FLOAT 118
FMT 119
FOLLOW. 119
FORMAT 120
FPC 121
FPR 121
GLOBALS 121
GOTO 122
GPACK 122

GPR 122
GPRG (z/OS only) 123
GPRH (z/OS only) 123
GSTATUS 123
HIDE 124
HISTORY. 125
ICOUNT 125
KWDSYN 126
LANGUAGE + 126
LANGUAGE COLOR 127
LANGUAGE COMMENTS 128
LANGUAGE DEBUG 128
LANGUAGE DECLARES 128
LANGUAGE DROP 129
LANGUAGE LOAD 129
LANGUAGE MACROS 132
LANGUAGE OPTIONS 132
LANGUAGE SCROLL 133
LANGUAGE STATUS 133
LANGUAGE STEM 134
LANGUAGE VERSION 134
LANGUAGE XPATH (CMS and z/OS) 135
LAST 135
LASTMSG 136
LEFT 136
LIBE (CMS and z/OS) 137
LOAD 138
LOCATE 140
LOCATION 140
LOCATION ALET 141
MACRO 141
MAJOR 142
MAP 142
MAXIMIZE 143
MINIMIZE 143
MODE (CMS only) 144
MODULE 144
MODULE 144
MODULE BASE 145
MODULE SIZE. 146
MOVE. 147
MPACK 149
MRUN 149

MRUN invoked through address ASM on CMS 150
MSG 150
MSGID (CMS and z/OS) 151
MSGMODE 151
MSTATUS 152
MSTEP 153
NAMES 154
NEXT 155
OFFSET 155
OPEN 156
OPTIONS 157
ORDER 158
OREGS 158
PACKED 158
PARMS 159
PAUSE 159
PER (CMS only) 160
PFK 160

Contents v

PFKDISP 160
PLOCATES 161
PRESERVE 162
PREVIOUS 162
PROGCHK (CMS only) 163
PROGCK (CMS only). 163
PSW 163
PSWSTEAL (CMS only) 164
QUALIFY 165
QQUIT 166
QUIET 166
QUIETLY. 166
QUIT 167
RCQUIT 167
REFRESH 168
REGS 168
REGS64 (z/OS only) 168
REGSTOPS (CMS only) 169
RESTORE 169
RETRIEVE 169
RIGHT 169
RLOG 170
RUN 171
RUNEXIT 171
R0-R15 171
SALIMIT 172
SAREGS 172
SAVE 172
SEARCH 173
SELFNUCX (CMS only) 173
SET ADSTOP (CMS only) 174
SET AREG 174
SET BREAK 175
SET COMMAND 175
SET EXITEXEC 176
SET GLOBAL STEM 176
SET GLOBAL TEXT 177
SET ICOUNT 177
SET OFFSET. 177
SET OPTION 178
SET PSW 179
SET REGSTOP (CMS only) 180
SET SIZE 180
SHOW 181
SIZE 182
SKIPSTEP 184
SPACE 184
STATUS 185
STEP 185
STMTSTEP 186
STOKEY 187
STOREMAP 187
STRUCTURE 188
SUBSET (CMS only) 189
SVC (CMS only) 189
SWAP 190
SYMBOL 190
TASKS (TSO only). 191
TITLE 191
TOP 192
TRIGGER LOAD 192

TYPE 193
UNION 193
UNTIL 194
UP 194
VALUE 194
VARIABLE 195
VCHANGE 196
VERSION 196
VS 196
VSEP 197
WATCH 197
WHERE 199
XEDEXIT (CMS only) 199
ZONED 200

Part 3. Advanced topics, macros,
profiles, exit routines 201

Chapter 11. Writing an IDF profile. . . 203
When the PROFILE is executed 203
Command restrictions related to PROFILE
execution 204

Chapter 12. Writing IDF macros . . . 207
REXX linkage considerations 208
The REXX ADDRESS statement 208
Initial or default ADDRESS environment 208
Overriding the default ADDRESS Environment . . 209
Saving and restoring an ADDRESS environment 209
Example macros 210

EX 210
REGS 211
SYSCMD 211

Chapter 13. The IDF exit routine . . . 213
Naming the exit routine 213
Controlling exit routine processing 213
Passing the reason for invocation 213
Looking at the address 214
Ignoring the event. 214
Other techniques 214
Writing a compiled-language IDF exit routine . . 215
Specifying that an exit routine is compiled code 215
Requirements for compiled-language exit routines 215

Chapter 14. REXX variables available
to macros 219
REXX variables with fixed names. 219
REXX variables with variable names. 220

Chapter 15. The EXTRACT command 223
Return codes 223
ADSTOPS (CMS only) 223
ALET 224
AREGS 224
ARGUMENT | ARGS 224
ARRAY 225
BREAK 226
CALLERS 226

vi HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

CMDMSG 227
COLORS 227
CURSOR 228

Symbolic addresses 229
DISASM 230
EVENT 231
EXITEXEC 231
GLOBAL 231
GLOBAL STEM 232
GLOBAL STEMS 232
GSTATUS 232
ICOUNT 233
LANGUAGE ARGUMENTS | ARGS 233
LANGUAGE COMMANDS | CMDS 234
LANGUAGE OPTIONS 234
LANGUAGE STATUS 235
LANGUAGE STEM 235
LANGUAGE VERSION 235
LASTMSG 236
LOAD 237
LOCATION 237
LOCATION ALET 238
MAP 238
MODE (CMS only) 239
MODULES 239
MSTATUS 240
NAMES 240
OPTIONS 241
PER (CMS only) 241
PFK 241
PLIST 242
PLOCATES 242
QUALIFY 243
QUERY SETTING 243
REGS 244
REGSTOPS (CMS only) 244
SCOPE 244
SCRVAR 245
SELFNUCX 245
SKIPSTEP 246
SOURCE 246
STOREMAP 247
STRUCTURE 247
SVC (CMS only) 248
SYMBOLS 248
TASKS 249
TYPE 250
UNION 250
VALUE 250
VARIABLE 251
VDECLARE | VDCL 251
VERSION 252
VLOC 252

VVALUE 253
WINDOWS 253

Part 4. Appendixes 255

Appendix A. ASMLANGX options . . . 257
ASM 257
CONDASM | NOCONDASM 257
DCL | NODCL 257
DEBUG 257
ERROR 258
IFM (CMS only) 258
INCL | NOINCL 258
LOUD | QUIET 258
MACDEF | NOMACDEF 259
OFM (CMS only) 259
OFN 260
OFT 260
PACK | NOPACK 260
PFM (CMS only) 260
PFT 261
SEQ | NOSEQ. 261

Appendix B. Diagnostic messages 263
Message numbers and severity levels 263
ASMLKEDT messages (z/VSE only). 264
IDF Language Support messages 264
IDF base debugger messages 270
ADATA extraction utility messages 279

Appendix C. Abbreviations 285

Appendix D. Performance
considerations 287

Appendix E. Migrating from TSO/E
TEST to IDF 289
General considerations 289
Invoking the target program 289
Specifying the target program parameters 290

Notices 291
Trademarks 292

Bibliography. 293

Glossary 295

Index 303

Contents vii

viii HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Figures

1. Specifying parameters for your program (TSO) 43
2. AdStops window 66
3. An example of the Additional Floating-Point

Registers window 67
4. An example of the Break window overlaying

other windows 68
5. Current Registers window, with General

Purpose and Floating Point Registers 68
6. Current Registers window, with Access

Registers 69
7. Current Registers window, with Control

Registers 69
8. Current Registers window, as opened with

REGS64 69
9. Disassembly window 70

10. Formatted Dump window 72
11. Unformatted Dump window 73
12. Entry Point Names window 73
13. LSM Information window, with VARIABLE

command output. 74
14. LSM Information window, with LANGUAGE

OPTIONS command output 74

15. A sample screen before any windows are
minimized 75

16. The same screen after the Disassembly
window is minimized 75

17. Options window 76
18. Old Registers window 76
19. Skipped Subroutines window 76
20. Target Status window 77
21. An example of several open windows on one

screen 78
22. An example of the Break window overlaying

other windows 79
23. Loading symbols directly from TEXT files 139
24. Example of a simple PROFILE 203
25. Example of a special purpose macro 208
26. Specifying a compiled-code exit routine 215
27. Parameter list passed to compiled-code exit

routine. 216
28. Invoking an ISPF dialog using TSO TEST 289
29. Invoking an ISPF dialog using IDF 290

© Copyright IBM Corp. 1992, 2015 ix

x HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

About this book

This book provides information about how to use the IBM® High Level Assembler Toolkit Feature
Interactive Debug Facility (IDF).

Throughout this book, we use these indicators to identify platform-specific information:
v Prefix the text with platform-specific text (for example, “Under CMS...”)
v Add parenthetical qualifications (for example, “(CMS)”)
v A definition list, for example:

z/OS Informs you of information specific to z/OS®.

z/VM Informs you of information specific to z/VM®.

z/VSE Informs you of information specific to z/VSE®.

CMS is used in this manual to refer to Conversational Monitor System on z/VM.

Syntax notation
Throughout this book, syntax descriptions use this structure:
v Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ��── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next line.
The �─── symbol indicates that a statement is continued from the previous line.
The ──�� indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �─── symbol and end with
the ───� symbol.

v Keywords appear in uppercase letters (for example, ASPACE) or uppercase and lowercase (for
example, PATHFile). They must be spelled exactly as shown. Lowercase letters are optional (for
example, you could enter the PATHFile keyword as PATHF, PATHFI, PATHFIL, or PATHFILE).
Variables appear in all lowercase letters in a special typeface (for example, integer). They represent
user-supplied names or values.

v If punctuation marks, parentheses, or such symbols are shown, they must be entered as part of the
syntax.

v Required items appear on the horizontal line (the main path).

�� INSTRUCTION required item ��

v Optional items appear below the main path. If the item is optional and is the default, the item appears
above the main path.

© Copyright IBM Corp. 1992, 2015 xi

�� INSTRUCTION
default item

optional item
��

v When you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the main path.

�� INSTRUCTION required choice1
required choice2

��

If choosing one of the items is optional, the whole stack appears below the main path.

�� INSTRUCTION
optional choice1
optional choice2

��

v An arrow returning to the left above the main line indicates an item that can be repeated. When the
repeat arrow contains a separator character, such as a comma, you must separate items with the
separator character.

�� INSTRUCTION �

,

repeatable item ��

A repeat arrow above a stack indicates that you can make more than one choice from the stacked
items, or repeat a single choice.

Format

The following example shows how the syntax is used.

xii HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by “fragment” is a required operand. Allowable choices for this operand are
given in the fragment of the syntax diagram shown below “fragment” at the bottom of the
diagram. The operand can also be repeated. That is, more than one choice can be specified, with
each choice separated by a comma.

�A� �B� �C�

��
optional item

INSTRUCTION �

,

fragment ��

fragment:

operand choice1
(1)

operand choice2
operand choice3

Notes:

1 operand choice2 and operand choice3 must not be specified together

About this book xiii

xiv HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

How to send your comments to IBM

If you especially like or dislike anything about this book, feel free to send us your comments.

You can comment on what you regard as specific errors or omissions, and on the accuracy, organization,
subject matter, or completeness of this book. Please limit your comments to the information that is in this
book and to the way in which the information is presented. Speak to your IBM representative if you have
suggestions about the product itself.

When you send us comments, you grant to IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

You can get your comments to us quickly by sending an e-mail to idrcf@hursley.ibm.com. Alternatively,
you can mail your comments to:

User Technologies,
IBM United Kingdom Laboratories,
Mail Point 095, Hursley Park,
Winchester, Hampshire,
SO21 2JN, United Kingdom

Please ensure that you include the book title, order number, and edition date.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM support web page

© Copyright IBM Corp. 1992, 2015 xv

http://www.ibm.com/support/entry/portal/overview/software/other_software/high_level_assembler_and_toolkit_feature

xvi HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Summary of changes

There are no significant changes of content between this edition of the User's Guide and the previous
edition.

The document has been reformatted to IBM's latest standards.

© Copyright IBM Corp. 1992, 2015 xvii

xviii HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Part 1. What is IDF and how do I start using it?

© Copyright IBM Corp. 1992, 2015 1

2 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 1. Introduction to the Interactive Debug Facility

The Interactive Debug Facility (IDF) is a symbolic debugging tool for Assembler Language programs. You
can also use it to debug programs written in compiled languages, at the object code level.

The Language Support Module (LSM) functions provide for debugging Assembler Language programs at
the source level. The ASMLANGX utility reads the ADATA file, produced by the High Level Assembler
when you assembled your program, and builds a file that IDF can use for source-level debugging.

You do not have to learn a new command language to use IDF. All IDF's basic functions can be
performed by using the default PF keys.

IDF is window oriented. The screen can be filled with windows of various types, including:
v Current Registers window
v Disassembly window
v Dump window
v LSM Information window

Windows can be mixed and matched in any order or combination on the screen. You can open multiple:
v Dump windows to view multiple areas of non-contiguous storage
v LSM Information windows
v Disassembly windows to view and modify your program at the object code level

These windows will show the source statements if they are available.

In general, the command that opens the window (for example, REGS for the Current Registers window)
is used to close that window on the screen.

Capabilities
IDF can be used for disassembly-level (object code level) or source-level debugging of user programs
under z/OS, CMS, and z/VSE.
v On z/OS

– Programs can be “batch” or TSO Command Processors, with support provided for reentrant
modules.

– IDF provides for debugging programs (for example, ISPF programs) for which some environmental
setup is needed.

– Parameters are passed to your program using standard z/OS EXEC PGM or TSO Command Processor
linkage conventions.

v On CMS
– Programs can be a mix of user-area programs, transients, nucleus extensions, and self-relocating

nucleus extensions.
– Unless one of the debugged programs is a transient, CMS SUBSET is available throughout the

debugging session.
– IDF provides for debugging programs (for example, a REXX function package) for which some

environmental setup is needed.
– Parameters are passed to your program using standard CMS linkage conventions, with both

tokenized and untokenized lists.
v On z/VSE

– Parameters are passed to your program using standard z/VSE EXEC PGM linkage.

© Copyright IBM Corp. 1992, 2015 3

The following sections provide an overview of IDF's capabilities.

Execution control
You can single-step through a program. If a Disassembly window is open as the program progresses, the
next instruction to be executed is highlighted.

You can use exit routines, written in REXX or compiled languages, to examine conditions surrounding a
breakpoint and determine whether or not to inform you of its occurrence, or to ignore the breakpoint and
continue execution.

By using the PATH option you can capture the number of times each instruction in your program is
executed. This can be helpful in locating "dead code".

You can use the HISTORY command to review the last 1,023 machine instructions executed by your
program. This is often useful in determining the circumstances leading to a "wild branch" or similar error.

An exit routine can use the MSTEP command to perform a dynamic path analysis of your program. (This
analysis is slow, since part of a REXX exit routine is executed for each instruction your program
executes.)

z/VM If Extended Control (EC) mode is available to IDF, PER is used to provide register or storage
alteration stops. Breakpoints and single-step mode are available regardless of EC mode
availability.

All SVC instructions issued by your program can be trapped.

If your program invokes a nucleus extension through BALR linkage, an option lets you
single-step through that nucleus extension.

IDF can debug programs that "steal" the new PSWs, if your program's instructions which access
these PSWs are declared to IDF.

Symbol support
You get symbol support by assembling with the ADATA option and using ASMLANGX to create an
extraction file from the SYSADATA file.

This allows you to enter instruction and data addresses in symbolic notation, and show data areas with
their associated labels, or in an unformatted display.

IDF provides a disassembly capability, with code section (CSECT) and external symbols intensified.
Storage references are disassembled to their symbolic names wherever possible.

Conditional branch instructions are disassembled to their extended mnemonics unless you specify
otherwise.

Typeover storage modification
When a Dump window is open or when a Disassembly window contains storage being dumped, you can
change locations by positioning the cursor to the desired area and typing over the contents; you can do
this in either the hex or character area of the display.

If the Current Registers window is displayed, you can alter the PSW, general purpose registers, and
floating point registers in the same way.

When a Disassembly window is open, you can modify the hex values of the instructions by typing over
them. These changes are immediately reflected on the screen with different instruction mnemonics,
addresses, and so on.

4 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Intelligent cursor sensing
When the Current Registers window is open, you can display the area of storage addressed by a general
purpose register by placing the cursor in the register and pressing the correct PF key. Similarly, you can
display storage addressed by the instruction address of the PSW. If the cursor is in an access register,
commands that can use an access-list-entry token (ALET) use the contents of the access register in addition
to the contents of the associated general purpose register.

The same things can be done in the Old Registers window as in the Current Registers window.

When a Dump window is open or when the Disassembly window contains storage being dumped, a full
word memory location may be used to specify the next area to be displayed by positioning the cursor in
it and pressing a PF key. This is useful for following a chain of control blocks.

When a Disassembly window is open, you can set breakpoints by positioning the cursor on the desired
instruction and pressing a PF key.

z/VM When a Dump window is open or when the Disassembly window contains storage being
dumped, you can set PER address (storage alteration) stops by positioning the cursor on the
desired location and issuing an ADSTOP command.

Screen swapping
IDF provides a screen swapping facility for debugging programs that perform full-screen I/O. When you
use this facility, your program's screen is captured when a breakpoint is reached, and restored when
control is returned to your program for more than a single instruction.

Record and playback
The IDF command record and playback facility makes recreating debugging sessions easier.

Customization - profile and macros
You can use a profile, written in the REXX programming language, to redefine display colors, PF key
functions, initial display format, and many other options.

A subcommand environment supports IDF macros written in REXX. The ENTER key or any of the 24 PF
keys can be assigned to run a macro or an IDF command.

User-written macros can:
v extract an argument based on cursor position
v set the cursor into a given window
v set data into either of IDF's message areas
v place data on the command line
v sound the terminal's audible alarm
v obtain the disassembled text associated with an instruction

Where can I run IDF?
IDF can be run on most ESA/370, or later, processors, from terminals (or emulators) of the 3270 family
(or equivalents).

Environments supported
IDF runs on these operating systems, and unless otherwise stated, on subsequent versions, releases, and
modification levels of these systems:

z/OS OS/390® Version 2 or z/OS Version 1

Chapter 1. Introduction to the Interactive Debug Facility 5

Required:

TSO/E Version 2 or higher
DFSMS/MVS™ 1.3 or higher

For more information, see Chapter 5, “Debugging programs on z/OS,” on page 41.

CMS VM/ESA Release 2

For more information, see Chapter 6, “Debugging programs on CMS,” on page 51.

z/VSE VSE/ESA Release 2.3

For more information, see Chapter 7, “Debugging programs on z/VSE,” on page 59.

Limitations when debugging on TSO
The following limitations apply on TSO:
v IDF can only be used to debug programs that have their own (E)SPIE or (E)STAE exits if SVC 97 is

used for breakpoints. The default is to use SVC 97 for breakpoints. You can override this by using the
NOSVC97 option, or a SET OPTION ON NOSVC97 command in the PROFILE macro. For more details
see “Breakpoint method selection (TSO)” on page 41.

v IDF cannot debug programs that issue ISPF SELECT service calls or those that involve z/OS
multitasking unless SVC 97 is used for breakpoints. The default and override are as for the previous
point.

v The REXX system interface requires that external functions return an EVALBLOK. If you are debugging
a REXX function package that has been called by a REXX exec and you quit from IDF before the
function has completed, the REXX interpreter issues an error message. You may need to logoff TSO
and log back on.

Limitations when debugging on CMS
The following limitations apply on CMS:
v You must take special care when debugging programs which:

– Employ interrupt-driven exit routines, such as ABNEXIT or HNDEXT exit routines
– Reside above the address contained in the VMSIZE word of NUCON
– Reside in DCSS, whether read only or read-write

v The REXX system interface requires that external functions return an EVALBLOK. If you are debugging
a REXX function package that has been called by a REXX exec and you quit from IDF before the
function has completed, the REXX interpreter issues an error message. You may need to re-IPL CMS.

v An IDF macro should invoke MRUN or MSTEP (or any other IDF command which causes immediate
execution of the target program) using the LPSW Fastpath REXX addressing environment, which is the
default addressing on entry to IDF macros. Detailed usage notes under “MRUN” on page 149 indicate
the limitations of and effects of using Address ASM.

v If you use IDF's PER Y mode to debug your program, IDF uses the hardware Program Event
Recording (PER) support for register and storage alteration events.
PER events might be triggered during the execution of CMS's SVC handling (for example, for a register
alteration). If the event occurs in the small window between the start of that CMS SVC handling and
the point where it has saved the SVC interrupt status, there is a problem if IDF tries to issue an SVC
itself (for example, to obtain working storage or to display a full-screen panel). CMS recognizes an
illegal SVC recursions, issues a message, and requires a re-IPL.
IDF uses special logic when running on CMS level 8 (or higher) to detect when CMS is in that small
window of its SVC handler; if you are on CMS 7 (or lower), the IDF detection logic is bypassed. CMS
may detect an Illegal reentry into INTSVC, and require a re-IPL of CMS.
Because IDF cannot issue an SVC itself when in the SVC window, it cannot display a full-screen panel,
or even issue a normal LINEDIT or LINEWRT or WRTERM (which each require an SVC). Instead, it

6 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

generates a set of CP MSG * messages to the terminal to provide some basic information about the event
that could not be handled normally. IDF execution continues normally after these messages.

Limitations when debugging under z/VSE
The following limitations apply on z/VSE:
v IDF only supports debugging of phases that are loaded into the same partition as IDF.
v Logical Transients or phases loaded into the SVA cannot be debugged
v The z/VSE Linkage Editor does not include any SYM records in the phase. Therefore only external

symbols are available for IDF processing on z/VSE, unless you use the source level facilities provided
by ASMLANGX, see “Batch language extraction on z/VSE” on page 18.

Chapter 1. Introduction to the Interactive Debug Facility 7

8 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 2. Getting started with IDF

This chapter provides a description of the steps to debug the IDF sample program.

IDF needs some changes to your normal run-time environment to allow it to debug your programs.
These changes ensure that IDF receives and retains control when your program runs.

Program preparation
Before invoking IDF, you need to make some information about your program available to IDF.

In any case where IDF's source-level debug capabilities are used, before a debugging session you must
generate an IDF language extract file, using the ASMLANGX utility.

Detailed information about program preparation is provided in Chapter 3, “Using ASMLANGX to extract
source-level information,” on page 15.

Program debug basics
Having prepared your program, you can use IDF to help you debug it.

A typical sequence of operations is:
v Start the debugging session by invoking ASMIDF (IDF), specifying your program name, IDF options (if

appropriate), and parameters to pass to your program.
v Issue the LANGUAGE LOAD command to load the IDF Language extract files for all other program

sections which are relevant to the problem being debugged.
v Issue IDF commands to tailor your debugging environment and to determine where your program is

in error. You can issue commands as IDF macros, or interactively at the command prompt.

Commands to IDF come from:
v Entering them on the IDF command line.
v Pressing PF keys, which issues the associated IDF command.

The IDF commands on PF keys are the default set of commands provided by IDF, or user commands,
registered using the PFK command.

v IDF macros (written in REXX).
v User programs.

Refer to Chapter 8, “Windows, PF keys, cursor positioning, and other operational details,” on page 65
and Chapter 10, “Commands and operating procedures,” on page 91 for more details.

Sample debug session on TSO
This section provides a simple example of preparing and debugging an assembler language program. It
assumes that both the High Level Assembler and the IDF components of the Toolkit were installed on
your system and you have access to them.

Sample program preparation
1. Assemble and link the sample program:

© Copyright IBM Corp. 1992, 2015 9

//jobname JOB
//ASMMSAMP EXEC ASMACL,PARM.C=(OBJ,ADATA)
//C.SYSIN DD DSN=<hlq>.SASMSAM2(ASMMSAMP),DISP=SHR
//C.SYSADATA DD DSN=<myid>.SYSADATA(ASMMSAMP),DISP=SHR
//L.SYSLMOD DD DSN=<myid>.LOAD(ASMMSAMP),DISP=SHR

2. Create the source-level extract file:
//jobname JOB
//ASMMSAMP EXEC PGM=ASMLANGX,PARM=’ASMMSAMP’
//SYSADATA DD DSN=<myid>.SYSADATA,DISP=SHR
//ASMLANGX DD DSN=<myid>.ASMLANGX,DISP=SHR

Invoking IDF
At the TSO/E READY prompt allocate the required data sets:
ALLOC FI (ASMLANGX) DS(’<myid>.ASMLANGX’) SHR
TSOLIB ACT DS(’<myid>.LOAD’)

Invoke IDF by entering:
ASMIDF ASMMSAMP

Wait until the initial IDF panel is displayed, and then continue at “Running IDF on a sample program”
on page 12.

Invoking IDF with a TSO batch job
To debug the sample program ASMMSAMP, submit the following job:
//jobname JOB
//IDFT EXEC PGM=IKJEFT01,DYNAMNBR=100,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
TSOLIB ACT DSN(’<myid>.LOAD’ +

’<hlq>.SASMMOD1’ +
’<hlq>.SASMMOD2’)

ALLOCATE DD(ASMLANGX) DSN(’<myid>.ASMLANGX’) SHR REUSE
ALLOCATE DD(ASM) DSN(’<myid>.ASM’) SHR REUSE
TSOEXEC ASMIDF ASMMSAMP (LUNAME <luid>
TSOLIB DEACT
FREE FI(ASM ASMLANGX)

/*

Notes:

1. The IDF parameter LUNAME (or LU) must be specified
2. The IDF VTAM APPLIDs ASMTL001 to ASMTLnnn must be ACTIVE
3. The VTAM luid specified in the LUNAME parameter must be ACTIVE

Sample debug session on z/OS
This section provides a simple example of debugging an assembler language program. It assumes that
both the High Level Assembler and the IDF components of the Toolkit were installed on your system and
you have access to them.

Invoking IDF with a batch job
To debug sample program ASMMSAMP, prepared in the section “Sample debug session on TSO” on page
9, submit the following job:
//jobname JOB
//IDFB EXEC PGM=ASMIDFB,
// PARM=’ASMMSAMP (NOSVC97 LUNAME <luid> ’
//STEPLIB DD DISP=SHR,DSN=<myid>.LOAD
// DD DISP=SHR,DSN=<hlq>.SASMMOD1

10 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

// DD DISP=SHR,DSN=<hlq>.SASMMOD2
//ASMLANGX DD DISP=SHR,DSN=<myid>.ASMLANGX
//ASM DD DISP=SHR,DSN=<myid>.ASM
//SYSTSPRT DD SYSOUT=*

Notes:

1. The IDF parameters NOSVC97 and LUNAME must be specified
2. The IDF VTAM APPLIDs ASMTL001 to ASMTLnnn must be ACTIVE
3. The VTAM luid specified in the LUNAME parameter must be ACTIVE
4. TSO Command Processor programs are not supported

Sample debug session on CMS
This section provides a simple example of preparing and debugging an assembler language program. It
assumes that both the High Level Assembler and the IDF components of the Toolkit were installed on
your system and you have access to them.

Sample program preparation
1. Assemble the sample program:

ASMAHL ASMMSAMP (ADATA

2. Generate the load module and rename the LOAD MAP file:
LOAD ASMMSAMP (RLDSAVE
GENMOD ASMMSAMP
RENAME LOAD MAP A ASMMSAMP = =

3. Create the source-level extract file:
ASMLANGX ASMMSAMP

Invoking IDF
Invoke IDF by entering:

ASMIDF ASMMSAMP

Wait until the initial IDF panel is displayed, and then continue at “Running IDF on a sample program”
on page 12.

Sample debug session on z/VSE
This section provides a simple example of preparing and debugging an assembler language program. It
assumes that both the High Level Assembler and the IDF components of the Toolkit were installed on
your system and you have access to them.

Sample program preparation
* $$ JOB JNM=ASMMSAMP,CLASS=0,DISP=L,LDEST=*,PDEST=*
// JOB ASMMSAMP
// LIBDEF *,SEARCH=(PRD2.PROD,yourlib.sublib)
// DLBL SYSADAT,’SYSADATA’,0,VSAM, X

CAT=VSESPUC,RECSIZE=8192, X
DISP=(,KEEP),RECORDS=(500,500)

// LIBDEF PHASE,CATALOG=yourlib.sublib
// OPTION NODECK,CATAL

PHASE ASMMSAMP,*
// EXEC ASMA90,SIZE=ASMA90,PARM=’ADATA’
COPY ASMMSAMP
/*
// EXEC ASMLKEDT
/*

Chapter 2. Getting started with IDF 11

// EXEC ASMLANGX,PARM=’ASMMSAMP’
/*
/&
* $$ EOJ

Invoking IDF
Invoke IDF by running:
* $$ JOB JNM=ASMMSAMP,CLASS=0,DISP=L,LDEST=*,PDEST=*
// JOB ASMMSAMP
// SETPFIX LIMIT=24K
// LIBDEF *,SEARCH=(PRD2.PROD,yourlib.sublib)
// EXEC ASMIDF,PARM=’ASMMSAMP (LU luname’
/*
/&
* $$ EOJ

Wait until the initial IDF panel is displayed on luname, and then continue at “Running IDF on a sample
program.”

Running IDF on a sample program
1. Open the Current Registers window by pressing PF2.

The Current Registers window shows the PSW, 16 general purpose registers and 4 floating point
registers.

2. Open the Disassembly window by pressing PF9.
The Disassembly window shows the sample program in object and disassembled forms.

3. Execute the first instruction by pressing PF1. This will cause IDF to automatically load the language
extract file for source-level debugging.

4. Open windows to display source variables:
open var vpacked
open var vhalf
open var vfull
open var vchar

Tip: Use PF12 to retrieve the previous command and then overtype the last few characters.
5. Press PF1 until the end of the program, observing the changing values in the Current Registers

window, and values being set in storage as displayed in the LSM Variable Information windows.
6. Press PF3 twice to exit IDF.

12 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Part 2. Guide to using IDF

© Copyright IBM Corp. 1992, 2015 13

14 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 3. Using ASMLANGX to extract source-level
information

Source-level debug support extends IDF by adding source code and variable display.

ASMLANGX collects information about the program sections in the program being debugged, from the
SYSADAT(A) file created by the High Level Assembler.

Assembly requirements
The first step is to assemble the program.

The ADATA assembler option is needed to generate a file containing detailed information about the
assembly.

Program build requirements
The next step is to build the executable module, as appropriate for the operating system environment in
which you intend to run IDF.

Building a module on z/OS
IDF uses information from the Load Module file to determine locations of the program CSECTs and
external symbols.

Building a module on CMS
The LOAD MAP file that results from the LOAD/GENMOD operation must be retained.
v Rename this file so that its name matches the file name of the executable module.
v This file is used by IDF to determine locations of the program CSECTs and external symbols.
v If the assembler TEST option is specified, this file also contains records that describe many of the

assembler internal symbols. If present, IDF uses these records to help in the disassembly of the
program. Since they are not essential, and tend to make the final MAP file quite large, you may
suppress them by specifying the LOAD NOINV option.

Building a phase on z/VSE
IDF uses the librarian member phasename.MAP created by ASMLKEDT, which is a linkage editor
front-end program.
v This member is used by IDF to determine locations of the program CSECTs and external symbols.
v The assembler TEST option does not apply.

If IDF cannot locate a MAP for a referenced phase then a dummy map is created. The dummy map has
one CSECT with the same name as the phase and one entry point name ENTRY.

To produce a map for IDF On z/VSE, replace the program LNKEDT in the link-edit step with program
ASMLKEDT. ASMLKEDT calls the linkage editor and produces a librarian member phasename.MAP on
the PHASE catalog library.

To invoke ASMLKEDT, adjust the JCL, replacing
// EXEC LNKEDT,PARM=’...’

© Copyright IBM Corp. 1992, 2015 15

with
// EXEC ASMLKEDT,PARM=’...’.

The PARM values remain the same.

For example:
// LIBDEF PHASE,CATALOG=MY.SUBLIB
// LIBDEF *,SEARCH=(MY.SUBLIB,...)
// OPTION CATAL

PHASE MYPROG,*
INCLUDE MYPROG

/*
* Invoke linkage editor and create MYPROG.MAP
// EXEC ASMLKEDT,PARM=’AMODE=24’
/*

Running ASMLANGX
The following sections describe how to run ASMLANGX to create a file to allow source-level debugging.

ASMLANGX handles the case where several programs are included in a single source file and the
assembler BATCH option is used to process this composite program.

For all operating systems, the input file must be a SYSADATA file created by High Level Assembler
Release 2 or higher.

Extraction file allocation on z/OS
You may use ASMLANGX to create the extract files as sequential files on z/OS, but normally you create
a PDS to contain the extracted data for actually debugging the target program using IDF's Language
Support.

The recommended format of the extract file is:
RECFM(VB) LRECL(1562) BLKSIZE(27998)

Memory above the 16 MB line is exploited for extract information.

ASMLANGX does not perform any dynamic allocation. You will need to allocate the SYSADATA data set
to DDname SYSADATA and the ASMLANGX data set to DDNAME ASMLANGX before you invoke the
ASMLANGX command processor.

Online language extraction on TSO

�� ASMLANGX file-name

�

(

option

��

file-name
The PDS member name of the input and output files.

For TSO sequential files (DSORG(PS)), the name is ignored.

The default input file DDname is SYSADATA. Please see “PFT” on page 261.

16 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The default output file DDname is ASMLANGX. Please see “OFT” on page 260.

option
Options are described in Appendix A, “ASMLANGX options,” on page 257.

Example TSO commands
alloc dd(sysadata) ds(my.adata) shr
alloc dd(asmlangx) ds(my.langx) old
asmlangx myprog (asm loud error

Batch language extraction on z/OS

�� //stepname EXEC PGM=ASMLANGX

�

,PARM='file-name('

option

��

file-name
The PDS member name of the input and output files.

For TSO sequential files (DSORG(PS)), the name is ignored.

The default input file DDname is SYSADATA. Please see “PFT” on page 261.

The default output file DDname is ASMLANGX. Please see “OFT” on page 260.

options
Options are described in Appendix A, “ASMLANGX options,” on page 257.

Example JCL
//* */
//* --ASMLANGX -- EXTRACTION --
//*
//* Replace member with the correct member name
//* Replace hlq. with the correct high-level qualifiers
//*
//ASMLANGX EXEC PGM=ASMLANGX,REGION=4096K,
// PARM=’member (ASM LOUD ERROR’
//SYSADATA DD DISP=SHR,DSN=hlq..SYSADATA
//ASMLANGX DD DISP=OLD,DSN=hlq..ASMLANGX

Online language extraction on CMS

�� ASMLANGX file-name (

� option

��

file-name
The file name (FN) of the input and output files.

The default input file type is SYSADATA. Please see “PFT” on page 261.

The default output file type is ASMLANGX. Please see “OFT” on page 260.

Chapter 3. Using ASMLANGX to extract source-level information 17

option
Options are described in Appendix A, “ASMLANGX options,” on page 257.

Batch language extraction on z/VSE

�� // EXEC ASMLANGX

�

,PARM='output-file-name '
(

option

��

output-file-name
The librarian member name of the ASMLANGX member that is either created or replaced on the
specified PHASE CATALOG library.

The default input file DLBL name is SYSADAT. Please see “PFT” on page 261.

The default output file name can be overridden. Please see “OFN” on page 260.

option
Options are described in Appendix A, “ASMLANGX options,” on page 257.

JCL example
* Create language member ASMSAMP.ASMLANGX on MY.LIB
* for source level debug
// LIBDEF *,SEARCH ...
// LIBDEF *,CATALOG=MY.LIB <======= Required
// DLBL SYSADAT,’my.adata’,0,VSAM,CAT=VSESPUC,DISP=(,KEEP)
// EXEC ASMLANGX,PARM=’myprog (ASM LOUD ERROR’
/*

Which files to keep
Once you have generated an extraction file, you can choose to discard or keep the input files. IDF needs
only the extraction file and the module file, and the LOAD MAP on CMS.

z/VM and z/OS
If you have several separately compiled programs which are linked into a single module, you can
either retain an extraction file for each of them, or you can copy them into a single appended file
for convenience. It is recommended you keep them separate, in case you want to change and
recompile one of the separate compiles.

Return codes
0 Operation successful, output file was written.
0xxx Error discovered while parsing arguments or options, values for xxx are:

1 Token too long
2 Left parenthesis found inside options
3 Unknown option
4 No primary input file name (PDS member name) was specified

2xxx Error occurred during scan of ADATA file.
3xxx Error occurred while writing output file.

For return codes 2xxx, and 3xxx, the values for xxx are:
0yy yy is the RC from File_Write
1yy yy is the RC from File_Open

18 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

2yy yy is the RC from File_Read
3yy yy is one of the following ASMLANGX codes:

10 = file not in expected format
11 = maximum mumber of statements exceeded

4yy yy is the RC from File_Point
5yy yy is the RC from Mem_Allocate
6yy yy is the RC from Mem_Free
7yy yy is the RC from File_Close
8yy yy is the RC from File_Note

Chapter 3. Using ASMLANGX to extract source-level information 19

20 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 4. Invoking IDF to debug your program

This chapter describes how to invoke IDF to debug your program.

When preparing to use IDF, you should understand:
v How the program is packaged
v How the program is to be loaded into storage
v The conventions used to pass parameters to the program

This section explains how to invoke IDF to perform different kinds of debugging jobs.

For a complete list of options, see “IDF options at invocation” on page 25.

When you invoke IDF, double-check that your options are correct. If you make mistakes setting up a
debugging session, you are making the session more complicated.

Running IDF on TSO and CMS

�� ASMIDF module-name

�(idf-option
*profile-macro-option / module-parameters

��

module-name
The name of the module to be debugged.

idf-option
An option directed to IDF.

See “IDF options at invocation” on page 25 for details on the options.

*profile-macro-option
An option that begins with an asterisk (*) is not examined by IDF. Instead, it is made available for
processing by the PROFILE macro. Retrieve these options by issuing the EXTRACT PLIST command
within the macro and parsing the result.

module-parameters
Parameters directed to the module that is to be debugged.

IDF only operates as a TSO command processor on a 3270 terminal, either real or emulated.

© Copyright IBM Corp. 1992, 2015 21

Running IDF via TSO batch job

�� ASMIDF module-name (LU vtam_luid �

�

� idf-option
*profile-macro-option / module-parameters

��

module-name
The name of the module to be debugged.

vtam_luid
The VTAM logical unit name of the terminal to be used by IDF.

idf-option
An option directed to IDF.

See “IDF options at invocation” on page 25 for details on the options.

The LUNAME option is required.

*profile-macro-option
An option that begins with an asterisk (*) is not examined by IDF. Instead, it is made available for
processing by the PROFILE macro. Retrieve these options by issuing the EXTRACT PLIST command
within the macro and parsing the result.

module-parameters
Parameters directed to the module that is to be debugged.

Example JCL

Note: This example assumes the HLASM Toolkit target library (SASMMOD2) is in the linklist.
//jobname JOB <job parameters>
//IDFT EXEC PGM=IKJEFT01,DYNAMNBR=100,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
TSOLIB ACT DSN(’<myid>.LOAD’)
ALLOCATE DD(ASMLANGX) DSN(’<myid>.ASMLANGX’) SHR REUSE
ALLOCATE DD(ASM) DSN(’<myid>.ASM’) SHR REUSE
TSOEXEC ASMIDF MYPROG (LU MYterm / module-parameters
TSOLIB DEACT
FREE FI(ASM ASMLANGX)

/*

22 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Running IDF via z/OS batch job

�� //stepname EXEC PGM=ASMIDFB,PARM='module-name (NOSVC97 LU vtam_luid �

�

� idf-option
*profile-macro-option / module-parameters

��

stepname
The name of the job step.

module-name
The name of the module to be debugged.

vtam_luid
The VTAM logical unit name of the terminal to be used by IDF.

idf-option
An option directed to IDF.

See “IDF options at invocation” on page 25 for details on the options.

The NOSVC97 option and the LUNAME option are required.

*profile-macro-option
An option that begins with an asterisk (*) is not examined by IDF. Instead, it is made available for
processing by the PROFILE macro. Retrieve these options by issuing the EXTRACT PLIST command
within the macro and parsing the result.

module-parameters
Parameters directed to the module that is to be debugged.

Example JCL
//jobname JOB <job parameters>
//IDFB EXEC PGM=ASMIDFB,
// PARM=’MYPROG (NOSVC97 LUNAME MYterm ’
//STEPLIB DD DISP=SHR,DSN=<myid>.LOAD
// DD DISP=SHR,DSN=ASM.SASMMOD1 HLASM TARGET LIBRARY
// DD DISP=SHR,DSN=ASM.SASMMOD2 TOOLKIT TARGET LIBRARY
//ASMLANGX DD DISP=SHR,DSN=<myid>.ASMLANGX
//ASM DD DISP=SHR,DSN=<myid>.ASM
//SYSTSPRT DD SYSOUT=C

Chapter 4. Invoking IDF to debug your program 23

Running IDF on z/VSE

�� // EXEC ASMIDF,PARM='phasename (� idf-option
*profile-macro-option / phase-parameters

�

� ' ��

phasename
The name of the phase to be debugged.

idf-option
An option directed to IDF.

See “IDF options at invocation” on page 25 for details on the options.

The LUNAME option is required.

*profile-macro-option
An option that begins with an asterisk (*) is not examined by IDF. Instead, it is made available for
processing by the PROFILE macro. Retrieve these options by issuing the EXTRACT PLIST command
within the macro and parsing the result.

phase-parameters
Parameters directed to the phase that is to be debugged.

Example JCL
// SETPFIX LIMIT=24K
// LIBDEF PHASE,SEARCH=(MY.LIBRARY,HLASM.LIBRARY)
// LIBDEF PROC,SEARCH=(MY.PROCLIB,HLASM.LIBRARY)
// EXEC ASMIDF,PARM=’MYPROG (LU MYterm /phase-parameters’
/*

These JCL statements are needed:

SETPFIX LIMIT
Sets the page fix limit. This must be set to 24K for the product exit to function correctly.

LIBDEF PHASE
Defines the library that contains the phase map created with the ASMLKEDT, or the dummy
map, and the phase to be debugged.

LIBDEF PROC
Defines the procedure library which contains any REXX macros.

EXEC ASMIDF
Executes the program ASMIDF (IDF) using the parameters specified with the PARM option.

24 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

IDF options at invocation
You can set most of these options after invocation using the SET OPTION command (see“SET OPTION”
on page 178). However some options only make sense if they are specified at invocation.

The options only available at invocation are:

FASTPATH ISA LIBE LINE LUNAME NOPROFIL PROFILE RLOG

When you set options in a profile, other restrictions apply. For more information, see “Command
restrictions related to PROFILE execution” on page 204.

1ADSTOP (CMS only)

�� 1ADStop ��

When PER is enabled, four address ranges are provided and storage modifications in any of these ranges
should cause IDF to present a message. Because of the way the PER hardware works, IDF must partially
disassemble the instruction being executed to obtain an address to check against the address ranges. In
some cases storage modification events are missed.

However, if the 1ADSTOP option is set, the four address ranges are treated as a single address range,
beginning at the lowest address in any range and ending at the highest address in any range. In this case
events are recognized without partial disassembly.

AMODE24 | AMODE31 | AMODE64 (z/OS only)

��
AMODE24

AMODE31
AMODE64

��

AMODE24 is valid on any XA or ESA system. It initializes the target program as AMODE24, regardless of
the CMS, z/OS, or z/VSE defaults.

AMODE31 is also valid on any XA or ESA system. It initializes the target program as AMODE31,
regardless of the CMS, z/OS, or z/VSE defaults.

AMODE64 is only valid on a z/OS system running on a z/Architecture® machine. It initializes the target
program as AMODE64, regardless of the z/OS default.

Note: On CMS, if the target program is not a nucleus extension, and is AMODE(ANY), this option is
needed to enable IDF to recognize the program as AMODE31.

Chapter 4. Invoking IDF to debug your program 25

ASCII

�� ASCii ��

ASCII tells IDF to display the character portion of dumped storage in ASCII rather than in EBCDIC. Data
overtyped in these areas is also in ASCII, rather than EBCDIC.

AUTOLOAD | NOAUTOLD

��
AUTOLoad

NOAUTOLd
��

AUTOLOAD tells IDF to issue LANGUAGE LOAD commands for you if you STMTSTEP to a location
that is not within a code section for which IDF Language extract data was loaded. This is done in an
attempt to automatically load IDF Language extract files for you. This only works if the code section
name matches the file name of the extract file.

NOAUTOLD tells IDF not to issue LANGUAGE LOAD commands for you if you STMTSTEP to a
location that is not within a code section for which IDF Language extract data was loaded. For more
information about the LANGUAGE LOAD command, see “LANGUAGE LOAD” on page 129.

AUTOSIZE | NOAUTOSZ

��
AUTOSize

NOAUTOSz
��

AUTOSIZE tells IDF to automatically size Disassembly windows, Dump windows, and LSM Information
windows when a window is opened or closed. IDF also automatically places all opened windows so that
each window's upper border overlays the lower border of the window last opened.

NOAUTOSZ tells IDF to not automatically size Disassembly windows, Dump windows, and LSM
Information windows when a window is opened or closed. When a window is opened, IDF places it at
the top of the screen.

26 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

BCX | NOBCX

��
BCX

NOBcx
��

When the instruction displayed on the main panel is a BC or BCR, BCX shows an extended branch
mnemonic instead of the CC mask when disassembling the instruction. Mnemonics used are those for use
after compare instructions. This option has no effect on branch relative instructions.

NOBCX does not show BC and BCR instructions as their extended mnemonics, but shows the CC mask
instead.

CKSUBCM

�� CKSubcm ��

When the CKSUBCM option is set, IDF checks that its subcommand environment is intact before
executing a REXX exit routine. The CKSUBCM option is intended for use in hostile environments which
cut off the subcommand chain.

CMDLOG

�� CMDLog ��

When the CMDLOG option is set, IDF logs each operator command in the command log. For the location
of the command log, and more information about logging, see “Command record and playback features”
on page 80.

CMPEXIT

�� CMPExit ��

CMPEXIT indicates that the exit routine defined by the SET EXITEXEC command is a compiled-code
routine, not a REXX exit routine.

Chapter 4. Invoking IDF to debug your program 27

COLORS | COLOURS

�� COLors
COLours

mhti ��

COLORS sets the display colors. You can specify up to four colors.
(Default)

m = color for messages white
h = color for headings turquoise
t = color for text blue
i = color for input data green

The first is always messages, the second is always headings, and so on. Valid color letters are:
B = Blue G = Green P = Pink R = Red
T = Turquoise W = White Y = Yellow

For example, COLORS RYGB specifies messages red, headings yellow, text green, and input blue.

COMMAND

�� COMmand module-parameters ��

Use the module-parameters as a command to start the debugging operation. If the command is an EXEC,
you must prefix the command name with "EXEC".

DMSO (CMS only)

�� DMSO ��

Most symbols that start with "DMS0" are generated by system macros and are a nuisance. By default,
they are ignored. When the DMS0 option is set, they are loaded.

Note: Even if DMS0 is not set, "DMS0" symbols are loaded if they occur in DSECTs.

EXITEXEC

�� EXITEXEC name ��

EXITEXEC supplies the name of the exit routine.

28 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

FASTPATH | PATH | PATHFILE

�� FASTPath
PATH
PATHFile

��

FASTPATH displays the number of times each instruction was executed, at the right side of the
disassembly listing. Equivalent to the PATH option in function, but provides enhanced performance.

PATH produces the same display.

PATHFILE produces the same display as PATH, but at the end of operation, writes the collected data to:
v On CMS, file "ASM PATHDATA fm", where fm is specified by the MODE option (and defaults to file

mode A1).
v On z/OS, the data set pointed to by the PATHDATA DD name.
v On z/VSE, to SYSLST.

See “The PATH, FASTPATH, and PATHFILE options” on page 38 for more information.

FULLQUAL

�� FULLQual ��

FULLQUAL always displays and returns symbolic addresses with the module name included. The
default is to include only the module name, if the module containing the address is not the currently
qualified module. See “Addresses displayed by IDF” on page 82 for more information.

HEXDISP

�� HEXDisp ��

When the HEXDISP option is set, hexadecimal notation is used in disassembled instructions for all
displacements from symbols, or displacements which cannot be related to symbols.

HEXINPUT

�� HEXInput ��

Chapter 4. Invoking IDF to debug your program 29

When the HEXINPUT option is set, IDF assumes that numbers input without any explicit indication of
base are hexadecimal. If the first digit of a hexadecimal constant is not zero, IDF interprets it as the name
of a symbol.

IMPMACRO | NOIMPMAC

��
IMPMacro

NOIMPMac
��

IMPMACRO permits implied macros to be executed from the command line.

NOIMPMAC disallows the implied execution of macros from the command line. With this option in
effect, macro invocations must be prefixed by the MACRO keyword if they are to be found and executed.

INVPSW | NOINVPSW

��
NOINVPsw
INVPsw ��

When the INVPSW option is set, it lets you set the PSW to any combination of hexadecimal digits
through the SET PSW command.

When the NOINVPSW option is set, the PSW may only be set to a valid PSW through the SET PSW
command.

ISA (CMS only)

�� ISA address ��

ISA defines the address of a 16-byte doubleword-aligned interrupt save area that is to be used by all of
IDF's first level interrupt handlers.

Valid forms for address are X'nn', F'nn', and nn. The address must reside in the first 4k of storage. The
default value is X'500.'.

LIBE (z/OS and CMS)

�� LIBE fn ��

30 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

v On z/OS, the LIBE option specifies that the target load module should be loaded from an alternate DD
name. A "$" indicates that the target should be loaded from the standard OS load module search order.

v On CMS, the LIBE option specifies that the target program is to be loaded from an OS-style LOADLIB
rather than from a CMS-style MODULE file. The fn provided is "$", which indicates a CMS GLOBAL
command has specified the necessary LOADLIB, or the file name of the LOADLIB, which is added to
the list of GLOBAL LOADLIBs as the first library.

LINE (CMS only)

�� LINE line-address ��

The LINE option provides a means of telling IDF to use a terminal other than the virtual console, and is
useful when debugging full-screen applications. Specify the line address in explicit hexadecimal or
explicit decimal notation.

LUNAME (z/VSE and z/OS)

�� LUname lu-unit ��

The LUNAME option defines the lu-unit, the VTAM logical unit name of the terminal to be used by IDF.
This is required to run IDF in z/VSE.

LSMDEBUG

�� LSMDebug ��

Not for general use.

LSMDEBUG enables the internal diagnostic trace of the IDF Language Support subsystem.

MACROLOG

�� MACROLog ��

When the MACROLOG option is set, all IDF commands that are issued by macros or exit routines are
written to:
v On CMS, "ASM MACROLOG fm", where fm is specified by the MODE option (and defaults to file

mode A1).

Chapter 4. Invoking IDF to debug your program 31

v On z/OS, the commands are written to the data set defined by the MACROLOG DD name.
v On z/VSE, the commands are written to the data set defined by the MACROLG DLBL.

MODE (CMS only)

�� MODE file-mode ��

When the MODE option is set, the "CMDLOG" and "PATHDATA" files are read from or written to the
minidisk at the specified file-mode. The "MACROLOG" file is written to the minidisk at the specified
file-mode.

MODMAP | NOMODMAP (CMS only)

��
MODMap

NOMODMap
��

When the MODMAP option is set, IDF prefers the “fn MAP *” file over a “LOAD MAP *” file for symbol
information. If no “fn MAP *” is found, IDF checks for a “LOAD MAP *” file.

When the NOMODMAP option is set, IDF prefers the “LOAD MAP *” file over a “fn MAP *” file for
symbol information. If no “LOAD MAP *” is found, IDF checks for a “fn MAP *” file.

NODSECTS

�� NODSects ��

The default is to load symbols that occur in DSECTs. The NODSECTS option ignores these symbols.

NUCEXT (CMS only)

�� NUCext ��

When the NUCEXT option is set, the program is supposed to run as a CMS nucleus extension and is
already loaded.

32 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

OFFSET

�� OFFSet ��

When the OFFSET option is set, IDF shows dump and disasm addresses in terms of the currently set
offset value. Data at the address specified by the current offset is shown as +00000000.

OLDBREAK

�� OLDBREAK ��

The OLDBREAK option sets an alternative mode of operation for the BREAK command. This mode of
operation does not "toggle" a breakpoint. If the BREAK command is issued against an address where a
breakpoint is already set, IDF issues an error message.

PASSPGM

�� PASspgm ��

The PASSPGM option makes IDF pass program interruptions that are not the result of a PER event to the
CMS, z/OS, or z/VSE program interrupt handler. Used for debugging exit routines.

Warning: If the target program has not activated an exit routine to trap the interrupt, IDF abends. You
may need to re-IPL CMS or logon to TSO again following the debugging session. On z/VSE, PASSPGM
occurs immediately on STXIT PC entry. If the STXIT is not present, then IDF traps the program check.

PROFILE | NOPROFIL

�� PROfile
profile-macro

NOPROfil

��

PROFILE specifies the name of the initial profile macro to be run.

NOPROFIL stops IDF executing an initial profile macro.

If neither PROFILE nor NOPROFIL are specified, IDF attempts to run an initial profile macro called
PROFILE. If PROFILE is not found, then no initial profile macro is run.

Chapter 4. Invoking IDF to debug your program 33

QWDUMP

�� QWDump ��

QWDUMP applies to unformatted dump displays only; it forces all displays to begin on a "quadword"
boundary (the low order hex digit is zero).

RISK

�� RISk ��

When the RISK option is set, IDF ignores as many error indications as possible. This may result in an IDF
crash.

Setting the option may allow tracing of CMS services or DCSS-resident code under some circumstances.

RLOG

�� RLog ��

When the RLOG option is set, as soon as the PROFILE macro has completed and the target program is
ready for execution, all the commands in the command log file are executed. Then the CMDLOG option
is set. This provides a means of resuming an interrupted earlier debugging session.

For more information about command logging, see “Command record and playback features” on page 80.

ROWSTYLE

�� ROWstyle ��

When the ROWSTYLE option is set, IDF uses the "traditional" row-style arrangement for the register
display. The default is to display in columns.

34 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SBORDER

�� SBORDer ��

When the SBORDER option is set, IDF does not use APL characters in window borders. This is useful
when running IDF on a terminal emulator that does not support APL characters.

SCDACTIV

�� SCDACTIV ��

When the SCDACTIV option is set, IDF collapses its subcommand environment before activating the
target program, and re-creates it when control returns to IDF. This option is not expected to be useful in
general.

SELFNUCX (CMS only)

�� SELFNucx symbol ��

The code is self-nucxloading, so IDF does not check the length shown in the SCBLOCK to see that it
matches the length in the MODULE.

symbol defines the start of the nucxloaded code.

For example: selfnucx freego

STOPNOP | NOSTOPNP

��
STOPNOP

NOSTOPNp
��

STOPNOP tells IDF to stop on NOP and NOPR instructions that follow BAL, BALR, BAS, and BASR
instructions.

NOSTOPNP prevents IDF from stopping on NOP and NOPR instructions that follow BAL, BALR, BAS,
and BASR instructions.

Chapter 4. Invoking IDF to debug your program 35

STOPSTMT | NOSTOPST

��
STOPSTmt

NOSTOPSt
��

STOPSTMT tells IDF to stop single-stepping for a STMTSTEP or STEP command if it reaches a location
that is within a code section for which IDF Language extract data was not loaded. This is done in an
attempt to avoid what otherwise appears to be a loop.

NOSTOPST tells IDF to continue single-stepping for a STMTSTEP or STEP command if it reaches a
location that is not within a code section for which IDF Language extract data was loaded. For more
details see “Controlling single-stepping your program” on page 86

SVC97 | NOSVC97 (z/OS only)

��
SVC97

NOSVC97
��

When the SVC97 option is set, IDF uses SVC 97 for breakpoints.

When the NOSVC97 option is set, IDF does not use SVC 97 for breakpoints. Instead, it uses invalid
opcodes. NOSVC97 must be specified if running IDF in a z/OS (non-TSO) batch environment.

The SVC97 and NOSVC97 options can be set only at invocation, or within the profile macro prior to the
load of the user application.

For more details see section “Breakpoint method selection (TSO)” on page 41.

SWAP

�� SWAp ��

SWAP tells IDF to capture the target's screen. You need this option when you are debugging full-screen
applications, and need to enter information on the screen. You switch between the IDF debugging screen
and the target application through the SWAP command.

36 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SYSTEM (CMS only)

�� SYStem ��

When the SYSTEM option is set, the program runs in system key (key=0).

TRACEALL

�� TRACeall ��

When the TRACEALL option is set, and single-step mode is on, IDF traces executed instructions as much
as possible.

This does not include tracing in CMS services (though the RISK option may provide access) or other code
that resides above the address in the VMSIZE word of NUCON. It does include tracing in nucleus
extensions called through BALR linkage if they fall below the VMSIZE limit.

The default is to limit tracing to the target program's defined limits.

This option is set off through the SET OPTION command.

TRANS (CMS only)

�� TRANs ��

When the TRANS option is set, the program runs as a transient.

UNFTDUMP

�� UNFtdump ��

When the UNFTDUMP option is set, the memory dump does not show symbols. The formatted dump
display may still be obtained with the DUMPMODE command.

Chapter 4. Invoking IDF to debug your program 37

Initialization of general-purpose registers (GPRs)
The GPRs are initialized by IDF to the value X'FEFEnn0F' (where nn is the register number, 00 through
0F), with the following exceptions:
v R12 and R15 contain the target program's entrypoint address.
v R13 points to a 24-word save area (doubleword aligned).

z/OS

v R1 contains the parameter pointer.
If the COMMAND option is not specified, R1 points to a standard z/OS CALL format
parameter list.
If the COMMAND option is specified, R1 points to a standard TSO Command Processor
Parameter List (CPPL). For more details, see “Loading programs (TSO)” on page 44.

v If SVC 97 is being used for breakpoints, R14 points to an SVC 97; otherwise, it points to an
X'02FF'. IDF uses either of these to determine if control was returned by the target program.

v If option AMODE64 is in effect, the first word of each register is initialized by IDF to
X'00000000'.

z/VM

v R0 and R1 contain parameter pointers in the usual CMS fashion (for more information, see
“How to specify parameters for your program” on page 51).

v If the program is a nucleus extension, R2 contains the address of its SCBLOCK.
v R14 points to an X'02FF' used by IDF to determine that the target program has returned

control.

z/VSE

v R1 contains the parameter pointer.
v R14 points to an X'01FF' used by IDF to determine if control was returned by the target

program.

Initialization of floating point registers
The FPRs are initialized by IDF to X'0000000000000000'.

Initialization of access registers
Access registers AR0 and AR2 to AR15 are initialized by IDF to X'00000000'. AR1 is initialized by IDF to
X'00000001'.

The PATH, FASTPATH, and PATHFILE options
Use these options to display how many times an executed instruction was executed. From the display
you can determine:
v Sections of code that were not executed

These sections are either sections not exercised by testing, or "dead code" that will never be executed,
and hence you can remove from the program.

v Sections of code that were executed many times
These are called "hotspots" in your program: sections where by refining the program algorithm or
implementation, you can speed up program execution.

For example, to execute the CMS program "MYPROG" with the PATH support enabled, issue the
command:

ASMIDF MYPROG (PATH /Parms for MYPROG

38 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If you specified the PATH or PATHFILE options when IDF was invoked, you can choose an alternative
algorithm for collecting the instruction execution count information. You can set the FASTPATH option
only after the target program is loaded, and before any execution counts are collected.

Using the PATH option
If you specify the PATH option, the number of times each instruction was executed is displayed in a
column on the right of the open Disassembly windows. You must also have the disassembled text
displayed (SHOW DISASM), as the numbers are displayed to the right of these disassembled lines. The
same applies if the HISTORY command is used with the PATH option.

If the count exceeds 7 digits, the leftmost digits are truncated. This is unlikely, as executing individual
instructions 10 million times through IDF imposes quite a load on the system.

Using the PATHFILE option
If you want to capture the PATH information for more detailed analysis, you can specify the PATHFILE
option rather than PATH. When you leave IDF, this information is saved in a file:
v On CMS, the file "ASM PATHDATA A1" is written to disk.
v On z/OS, data is written to the data set pointed to by the "PATHDATA" DD statement.
v On z/VSE, data is written to SYSLST.

The columns in this file are, from left to right:
1. Execution count
2. Absolute memory address of the instruction
3. Name of the module containing the address
4. Address of the instruction within the module (offset)
5. Symbolic name of the instruction

If you plan to use this option, make sure you have plenty of free disk space. Also be aware that each
instruction needs eight bytes of free storage, plus 20 bytes of control information for every 64K block of
information.

Using the FASTPATH option
You can also consider the FASTPATH option, which records execution counts in a different way. Where
the PATH option uses eight bytes of storage for every instruction executed, FASTPATH uses only four,
but allocates a contiguous block of storage to record information by assuming that the maximum number
of instructions in your program is the program size divided by 2. Thus the FASTPATH option may, or
may not, take more storage than the PATH option. However, it does not have to scan a list to find the
instruction count information, so it executes in much less time.

The FASTPATH option is really a "mode" type of setting. The type of storage allocation and recording
performed is determined by whether you issue a SET OPTION ON FASTPATH or a SET OPTION ON
PATH command first. Once you have set the FASTPATH option to ON, you can use SET OPTION
ON/OFF PATH to turn execution recording on and off; the allocation method does not change once it is
initially set. Because the allocation mechanism assumes a given program size and start address, the SET
BASE and SET SIZE commands may not be used after the FASTPATH option is set.

When using the FASTPATH option, instruction count information is only collected for the original target
module. All other instructions executed are ignored.

Excluding called subroutines
If you have subroutines in your program that you do not want to be included in PATH or FASTPATH
processing, use the SKIPSTEP command. This causes IDF to skip PATH and FASTPATH processing when

Chapter 4. Invoking IDF to debug your program 39

you call a subroutine on the list of subroutines being skipped. That is, for the purposes of PATH and
FASTPATH processing, the skipped subroutine is treated as one instruction: the subroutine call itself.

40 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 5. Debugging programs on z/OS

On z/OS, IDF supports the following:
v User-Area Programs
v Programs in the z/OS Link List

This chapter describes how to debug each of these.

IDF supports the debugging of programs with these formats:
v Load Module members
v Programs in storage
v Program Objects

Note: IDF is not able to debug CICS® or IMS™ transactions directly.

Data set naming conventions
Some IDF commands cause data to be written to or read from files. Since IDF was originally written to
run on CMS, the commands are oriented towards the naming conventions used by the CMS file system.

The mapping of the CMS file conventions to z/OS is:

CMS Equivalent on z/OS

fn PDS member name (ignored if using sequential file)

ft DDNAME, which in turn points to the z/OS data set name

fm Not used on z/OS

Note: You must allocate the DDs using TSO ALLOC commands, or place them in your TSO startup
procedure JCL, or place them in the batch IDF JCL. No dynamic allocation is performed.

Optional data set file allocations
The following allocations are required if the relevant options are specified at IDF invocation:

CMDLOG RECFM(VB) LRECL(124) BLKSIZE(29393)
MACROLOG RECFM(VB) LRECL(6148) BLKSIZE(29393)
PATHDATA RECFM(VB) LRECL(79) BLKSIZE(29393)

Breakpoint method selection (TSO)
On TSO, IDF has two methods of setting breakpoints:
v Using SVC 97, the TSO/E TEST breakpoint SVC
v Using invalid opcodes.

Both methods have advantages and disadvantages.

SVC 97 breakpoints
The advantage of using SVC 97 for breakpoints is that IDF can then debug code that uses z/OS
subtasking or sets up (E)STAE or (E)SPIE exits. Also, IDF can debug ISPF dialogs.

© Copyright IBM Corp. 1992, 2015 41

The disadvantage is that you must install IDF in the z/OS Link List or your STEPLIB, or via the TSOLIB
command. You cannot install it in a TASKLIB or ISPLLIB concatenation. The reason for this is that IDF
must be invoked directly from TSO/E READY or from a CLIST that it is invoked from TSO/E READY.
You cannot invoke IDF from a REXX EXEC or under ISPF except by using the TSOEXEC command. For
an example of how to debug ISPF dialogs, see “ISPF applications (TSO)” on page 47.

Invalid opcode breakpoints
The advantages of not using SVC 97 for breakpoints are:
1. You can install IDF in a TASKLIB or an ISPLLIB.
2. You can more easily invoke IDF under ISPF.

This is useful if your LOGON PROC does not have a STEPLIB that you can write to.

The disadvantages of not using SVC 97 for breakpoints are:
1. IDF cannot debug code that uses z/OS subtasking or sets up (E)STAE or (E)SPIE exits. (When IDF is

invoked with the NOSVC97 option to test a program running under the LE/370 environment, the
LE/370 NOSTAE and NOSPIE options must be used.)

2. IDF cannot debug ISPF dialogs.
3. DBREAK does not function for modules not in storage.

Specifying the breakpoint method
Options allow you to select the method used for setting breakpoints:

SVC97
Tells IDF to use SVC 97 for breakpoints. This is the default.

NOSVC97
Tells IDF not to use SVC 97 for breakpoints.

Specify an option at invocation, or with a SET command in the PROFILE macro.

The SVC97 and NOSVC97 options cannot be set after IDF has loaded your program. As a result, if the
profile macro issues a LOAD or a LOAD MODULE command and you do not wish to use the default
breakpoint method, you must set the NOSVC97 option before issuing the LOAD or LOAD MODULE
command.

Specifying the SVC97 or NOSVC97 option at invocation overrides the setting of NOSVC97 or SVC97 in
the PROFILE macro.

Breakpoint method (z/OS batch)
In z/OS batch, IDF has only one method of setting breakpoints:
v Using invalid opcodes

How to specify parameters for your program (TSO)
To pass parameters to your program, append them to the ASMIDF command after a slash (/). IDF
interprets anything that follows a slash as parameters that should be passed to the target program.

The parameter string is passed to the target in standard z/OS EXEC PGM style. That is, R1 points to a word
that points to a halfword length field that is followed by the parameter string itself.

42 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The COMMAND option (TSO)
To pass a parameter string as a standard TSO Command Processor Parameter List (CPPL), use the
COMMAND option. The first token after the slash must be the command name, which is then followed
by its parameter string.

* TSO COMMAND Parameter List --------------------------------
CPPL DC A(command buffer)

DC A(UPT) │ copied from IDF invocation
DC A(PSCB) │
DC A(ECT) │

│
┌────────────────────────┘
│
�
CMDBUF DC AL2(length of command buffer)

DC AL2(offset to first non-blank byte after verb)
CMDSTR DC C’original command string’

The COMMAND option does not work exactly like the CP option of the TSO/E TEST command. The
examples in Appendix E, “Migrating from TSO/E TEST to IDF,” on page 289 compare the use of these
two options.

You can use the COMMAND option for other special environmental setups. For more details, see
“Programs requiring environmental setup (TSO)” on page 45.

A warning about leading blanks

All blanks between the slash (/) and the parameters to your program are included in the information
passed to your program. If you do not want initial blanks passed to your program, you must place the
parameters immediately after the slash, without intervening blanks.

Programs that use IKJSCAN

When invoking IDF from another TSO program that calls the TSO service IKJSCAN, such as ISPF, an
extra right parenthesis is added to the end of the command used to invoke IDF.

To prevent this extra parenthesis from becoming part of the parameter passed to your program, add a
close parenthesis before the slash or the command option. This extra parenthesis is ignored by IDF and
prevents IKJSCAN from adding one at the end of the IDF invocation command.

* z/OS PROGRAM Parameter List --------------------------------
PLIST DC A(PARMS+X’80000000’)

┬
│

┌────────────────┘
│
�
PARMS DC AL2(L’CMDSTR)
CMDSTR DC C’original command string’

Figure 1. Specifying parameters for your program (TSO)

Chapter 5. Debugging programs on z/OS 43

How to specify parameters for your program (z/OS Batch)
To pass parameters to your program, include them in the PARM= option on the EXEC ASMIDF
statement.

�� //stepname EXEC PGM=ASMIDFB,PARM='module-name (NOSVC97 LU luname �

�

� idf-options
/ module-parameters

��

stepname
The name of the job step.

module-name
The name of the module to be debugged.

luname
The VTAM LU name of the terminal used to debug this module.

idf-options
Options to be passed to IDF.

module-parameters
Parameters to be passed to your module. These are passed to the program by IDF in standard z/OS
EXEC PGM style. That is, R1 points to a word that points to a halfword length field that is followed
by the parameter string itself.

Loading programs (TSO)
How IDF loads your target program is dependent on whether the LIBE option is used or not.

If the LIBE option is NOT specified, then IDF uses the standard z/OS load module search order.
However after the load completes, IDF will attempt to read the module to determine the module map.
This read will fail unless the module was loaded from a STEPLIB, TASKLIB or ISPLLIB (when in ISPF)
data set.

If the LIBE option is specified, the next option token specifies the DD name of a pre-allocated DD
concatenation to be used in loading the target. If the target is not in the specified concatenation of
libraries the target is not loaded using the standard z/OS search order.

TASKLIBs and the SVC97 option

If the NOSVC97 option is specified, the TSO TEST SVC 97 support is not used for breakpoints.

In this case, IDF does not set up a TASKLIB, contrary to what is normally done when TSO/E CALL or
TEST commands are used.

Programs that dynamically load other modules and programs that are link-edited as overlay programs
may get z/OS System 106 ABENDs under IDF, unless the library in which the target program resides is
in the STEPLIB, ISPLLIB, or other TASKLIB DD concatenation.

44 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If MYPROG is a program that is normally invoked directly from the TSO/E READY prompt, you could
debug it with the following IDF command:

ASMIDF myprog /Parms for MYPROG

if myprog is loaded from a TASKLIB or STEPLIB.

File allocation requirements
If MYPROG is a program that is normally executed in z/OS Batch, you must use the TSO ALLOC
command to allocate needed data sets before invoking MYPROG under IDF. When you exit IDF, use the
TSO FREE command to release these data sets.

Also remember to allocate and free the DDs that are needed for IDF operation. These include:

ASM Used to access the PDSs holding the IDF REXX EXECs used to customize IDF for a particular
task.

ASMLANGX
Used to access the PDSs holding the IDF Language extract data files, if you want source-level
debug.

If you plan to execute the program more than once under IDF, write these commands into a REXX EXEC
or CLIST.

The TSOEXEC command
Invoke IDF with the TSO/E TSOEXEC command.
v This is optional when IDF is invoked:

– Directly from the TSO/E READY prompt
– From a CLIST that was invoked directly from the TSO/E READY prompt

v This is needed when IDF is invoked:
– From a REXX EXEC
– From a CLIST other than directly from the TSO/E READY prompt
– Under ISPF.

Programs requiring environmental setup (TSO)
If RXMYPROG is a REXX function package that permanently loads itself as a system extension when first
executed, and you are interested in debugging it when it is called by a REXX exec called TESTER, to
which you must pass a parameter, then load the REXX function into storage, and invoke IDF:

ASMIDF rxmyprog (COMMAND/exec tester a

The COMMAND option
The COMMAND option tells IDF that the string following a slash (/) is not an argument string to be
passed to your program, but is instead a command that it should issue to begin the debugging operation.

This COMMAND is LINKed to, and if it is an EXEC, you must precede it with a percent (%) sign. The
percent sign signifies an implicit EXEC, and the command string is passed to the EXEC command for
execution.

You can use this technique to debug user-area programs that need environmental setup.

When the COMMAND option is specified:
v IDF starts, but the registers and PSW are not displayed if the Current Registers window or Old

Registers window is open.

Chapter 5. Debugging programs on z/OS 45

v Set a breakpoint at the start of your program, or set a deferred breakpoint with the DBREAK
command, and then press the RUN key.

v IDF then issues the command you specified.
v When the breakpoint is reached, IDF issues a message to tell you that it has reached a breakpoint.

The registers and PSW are now available for inspection and modification. Before the first breakpoint,
IDF does not display the registers and PSW.

TSO batch and z/OS batch job requirements
When IDF is started as a TSO batch or z/OS batch job, it needs a terminal (defined by its VTAM logical
unit (LU) name) to run. The terminal is specified through the LUNAME option. The LUNAME is the
name used by VTAM to define the LU to the network, and is used by IDF to address the terminal.

IDF uses VTAM application IDs that are defined according to the convention:
v The first five characters must be ASMTL
v The last three characters must be consecutive 3-digit numbers, starting at 001

There must be at least as many VTAM application IDs defined as there are concurrent IDF sessions. For
example, if five IDF sessions are required at the same time, then there must be the following (at least)
five VTAM application IDs defined: ASMTL001 ASMTL002 ASMTL003 ASMTL004 ASMTL005.

Dynamically loaded programs (TSO)
The IDF DBREAK command provides a powerful deferred breakpoint facility to allow the simple
debugging of programs that are dynamically loaded with standard system calls. See “DBREAK” on page
109 for details.

Note: If your program is dynamically loaded, and then deleted from storage, any existing breakpoints
are invalidated. Use the IDF DROP MODULE command to notify IDF that the module definition is no
longer valid.

DROP MODULE removes all breakpoints that are currently defined for locations within this module. Any
deferred breakpoints (from previous DBREAK commands) are reactivated in case this module is loaded
into storage again, possibly at a different location.

If your program is dynamically loaded in a manner that is not supported by DBREAK (such as having
your own routine that loads and relocates an object module), you need another solution.
v The basic need is for IDF to gain control when your program begins execution.

– If you are using the SVC97 option, you should insert an SVC 97 (X'0A61') at the entry point of your
program using one of the following methods:
- If your program is written in assembler, insert an SVC 97 opcode in your program source.
- If a Load Module editor is available, change the opcode at the entry point to an SVC 97. Record

the original opcode for later restoration.
- Use a binary editor (such as the ISPF (PDF) editor in HEX mode), to edit the Object Module to

change the opcode at the entry point to an SVC 97. Record the original opcode for later
restoration.

– If you are using the NOSVC97 option, you should insert an invalid opcode (such as X'0000') at the
entry point of your program using one of the following methods:
- If your program is written in assembler, a DC X'0000' data directive in your program source.
- If a Load Module editor is available, change the opcode at the entry point to X'0000'. Record the

original opcode for later restoration.
- Use a binary editor (such as the ISPF (PDF) editor in HEX mode), to edit the object Module to

change the opcode at the entry point to X'0000'. Record the original opcode for later restoration.

46 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

See also “LANGUAGE LOAD” on page 129.
v Invoke IDF (use the COMMAND option, as described in “Programs requiring environmental setup

(TSO)” on page 45), and press the RUN key.
v IDF issues the command you specified with the COMMAND option, and your program is dynamically

loaded into memory. It then executes the instruction (SVC 97 or X'0000') that you inserted.
v IDF issues a message saying that either an operation exception occurred or a breakpoint was reached.
v At this point:

– If an extra instruction (X'0000') or the SVC 97 was inserted, you need to open the Current Registers
window, and use IDF's register typeover capability to update the PSW to advance the current
execution address by 2.
You can optionally replace the SVC 97 (or X'0000') by a NOPR R0 (X'0700') instruction. This stops
IDF receiving control at this location if the instruction is executed again.

– If an existing instruction was replaced (by an SVC 97 or X'0000'), you can restore the modified
instruction to its original value by opening a Disassembly window or Dump window and using
IDF's storage typeover capability.

v You should now be able to continue debugging the program as usual.

For information about source level support for dynamically loaded programs, see “Source level support”
on page 90.

Programs invoked by REXX (TSO)
Some programs, particularly REXX function packages, need environmental setup for debugging because
they are invoked by the REXX interpreter. There are other special considerations that apply to any
program invoked by REXX.

REXX functions must return an EVALBLOK. If you quit from IDF while in the middle of a REXX
function, an error message is issued by the REXX interpreter, and you may have to LOGOFF and then
LOGON to TSO again.

There is no practical way for IDF to stop this.

ISPF applications (TSO)
You can use IDF to debug an application program that needs an ISPF environment present, if SVC 97 is
used for breakpoints.

Notes:

1. The IDF session cannot be invoked from within ISPF. It must be invoked from the TSO/E ready
prompt.

2. If the library containing the program to be debugged does not reside in the STEPLIB or ISPLLIB
allocations, use TSOLIB ACTIVATE to include the load library, or allocate the library and invoke IDF
using the LIBE option to specify the allocated DDNAME.

The following examples describe a number of ISPF application debug scenarios.
v To debug an ISPF dialog program which resides in a data set in the STEPLIB allocation:

From the TSO/E READY prompt:
TSOEXEC ASMIDF XYZZY (COMMAND/ISPSTART PGM(XYZZY)

Once in IDF,
BREAK (XYZZY)

then
RUN

Chapter 5. Debugging programs on z/OS 47

v To debug an ISPF dialog program which resides in a data set in the ISPLLIB allocation:
From the TSO/E READY prompt:

TSOEXEC ASMIDF XYZZY (LIBE ISPLLIB COMMAND/ISPSTART PGM(XYZZY)

Once in IDF,
BREAK (XYZZY)

then
RUN

DB2 applications (TSO)
IDF may be used to debug an application program using DB2 EXEC SQL statements. There are a number
of environmental requirements which must be met:
v The IDF NOSVC97 option must be used.
v If running application under the Language Environment, then the LE options NOSTAE and NOSPIE

must be used.
v The DB2 commands must be placed on the TSO stack to be executed. The preferred method is to use a

CLIST, and place the DB2 commands within DATA and ENDDATA statements.
PROC 0 LIBE(’ASMIDF.SQL.LOAD’) MEMBER(SQLPROG1) OPT(’PARMS’) IDF
/* */
CONTROL NOCONLIST FLUSH NOLIST
PROFILE NOPAUSE
/* */
ALLOC FI(ASMLANGX) REUSE DA(’DMS.SQL.ASMLANGX’) SHR
ALLOC FI(ASM) REUSE DA(’ASMIDF.PROD.IDF’) SHR
/* */
ALLOC FI(LIBEDD) REUSE DA(’&LIBE’) SHR
/* */
IF &IDF = IDF THEN +

DO
DATA
DSN
RUN CP PLAN(&MEMBER)
TSOEXEC ASMIDF &MEMBER (LIBE LIBEDD NOSVC97 / &OPT
END
ENDDATA

END
ELSE +

DO
DATA
DSN
RUN CP PLAN(&MEMBER)
&MEMBER &OPT
END
ENDDATA

END
FREE FI(ASMLANGX LIBEDD ASM)
EXIT CODE(0)

Causing a break-in event (TSO)
A "break-in event" is an event that causes IDF to break in to the target program's execution and regain
control, even though a breakpoint was not reached. For example, you might need to cause a break-in
event if your program is in an infinite loop that does not contain a breakpoint.

When IDF initially invokes your program, it establishes an ESTAE exit. If your program has not
established its own ESTAE exit (which overrides the IDF ESTAE), IDF should receive control when the
ATTENTION key is pressed.

48 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

When a break-in event is recognized, IDF displays the IDF user interface screen and issues a message
acknowledging the event. You can then continue your debugging session.

Notes:

1. This requires SVC97 to operate normally.
2. There is no break-in event if the LUNAME option is specified when IDF is invoked.

Your program's defined limits
IDF considers "your program" to be any location within your initial program module, and any extra
program modules that you have defined.
v When your program is loaded, IDF determines its limits from the operating system.
v You can implicitly define extra modules as the result of triggering a deferred breakpoint established

with a DBREAK command.
v You can explicitly define extra modules with the IDF MODULE command:

– If the module is described by a Contents Directory Entry (CDE) you can establish the module
definition with a MODULE CDE command.

– You can define an explicit module origin and size with the MODULE BASE and MODULE SIZE
commands.

– You can establish an explicit module's CSECT structure with a LOAD SYMBOLS command (see
“LOAD” on page 138).

The origin and size of the programs known to IDF are displayed in the Target Status window, when
open.

Whenever possible, IDF notifies you if your program is preparing to branch to a location outside its
defined limits. This is often useful in locating a "wild branch", for example to location zero.

If you have specified the TRACEALL option, IDF considers the defined limits of your program to begin
at location zero and extend upward to the end of storage. Thus when you specify TRACEALL, you can
trace through all of virtual memory.

Care should be taken if you attempt to trace through protected (read only) storage.

Programs performing full-screen I/O (TSO)
Debugging programs that perform full-screen I/O is generally a difficult task, because when the
debugger reaches a breakpoint, the screen image created by your program is lost. You may become
frustrated if you need to look closely at the screen image to determine if the program is working
properly.

IDF provides the SWAP option to make this kind of debugging easier. If MYPROG was a user-area
program that performed full-screen I/O, you could debug it with the following IDF command:

IDF myprog (SWAP /Parms for MYPROG

When the SWAP option is in effect, IDF attempts to respect the screen image created by your program. In
single-step mode, IDF does nothing special. However, if you set a breakpoint in your program and press
the RUN key to run the target program to that point, before turning control over to your program, IDF
restores any saved screen image. When the breakpoint is reached, IDF captures the contents of the screen
and saves it before presenting its own display. The same process occurs when you use the UNTIL
command.

To capture the screen image, IDF uses the Read Buffer command in Character Mode, so even program
symbol sets should be saved.

Chapter 5. Debugging programs on z/OS 49

To see the saved screen at a breakpoint, issue the SWAP command. To return to the IDF screen, just press
ENTER.

Applications that use z/OS subtasking
To debug applications that make use of z/OS subtasking, IDF must be invoked with the SVC97 option
(see “Breakpoint method selection (TSO)” on page 41).

Debugging z/OS applications that make use of subtasking can be unreliable. IDF cannot handle more
than one event at a time. For example, a program check in one subtask while statement stepping in
another subtask causes an ABEND within IDF.

Breakpoints can be set in different subtasks at the same time, but this is only reliable when only one
subtask is “active” at a time (that is, the other subtask remains non-dispatchable). This requires judicious
use of breakpoints at the appropriate points in the application. It is strongly recommended that you do
not place breakpoints in code which can be executed by multiple tasks if it is possible for the breakpoints
to be encountered simultaneously. Failure to do this can cause unpredictable results.

50 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 6. Debugging programs on CMS

Program preparation on CMS
After all program sections are prepared and the process of building the final module is complete, save the
LOAD MAP file. This gives IDF the location of program sections within the module. If multiple programs
are being debugged, rename the file to "modname MAP" (where modname is the file name of the
MODULE).

By default, any local symbols which are present in SYM records within the program object code are
placed in the MAP file, with the prefix Invalid card - IDF uses this information if, for some
reason, you cannot use the ASMLANGX files for source-level debugging. Suppress these records with the
NOINV option of the CMS LOAD command if you wish to minimize the size of the MAP file.

On CMS, IDF debugs:
v User-Area Programs
v Transients
v Nucleus Extensions Loaded Explicitly
v Self-Loading Nucleus Extensions

IDF supports debugging programs in the following formats:
v CMS 5.5 (and later) format MODULE
v LOADLIB members
v OBJECT (TEXT) files
v Programs in storage

How to specify parameters for your program
To pass parameters to your program, include them at the end of the IDF command after a slash (/). IDF
interprets anything that follows a slash as parameters that should be passed to your program.

These parameters are parsed into tokenized and extended parameter lists. The flag byte in R1 has the
same contents as it has if your program is invoked directly. If IDF is invoked from an EXEC-1 program,
the contents of R0 at the time IDF was invoked are propagated to your program's R0.

* CMS Parameter Lists ---------------------------------------
* A) Extended Parameter List
EPLIST DC A(start of command verb)

DC A(start of first nonblank byte following verb)
DC A(first byte past the end of the argument list)
DC A(0)
DS 0D align next part on doubleword

* B) Tokenized Parameter List
TPLIST DC CL8’command verb’

DC CL8’token’
... ...
DC CL8’token’
DC 8X’FF’

CMDSTR DC C’original command string’

A warning about leading blanks: All blanks between the slash (/) and the parameters to your program
are included in the information passed to your program. If you do not want initial blanks passed to your
program, you must place the parameters immediately after the slash, with no intervening blanks.

© Copyright IBM Corp. 1992, 2015 51

Unless your program is a nucleus extension (see “CMS nucleus extensions loaded explicitly”), IDF loads
it into the appropriate area (user/transient) with the LOADMOD command.

For example, to debug MYPROG, normally invoked by:
MYPROG fn ft fm (abcd

You issue:
ASMIDF myprog / fn ft fm (abcd

If you want to specify more options for IDF, for example to set display colors, you specify:
ASMIDF myprog (COLORS RWGY / fn ft fm (abcd

User-area programs
By default, CMS programs are built to execute in the User Program Area at location X'20000'.

Unless told otherwise, IDF assumes that you want to debug a user-area program. There are no
mandatory options to specify when debugging a user-area program (although there are options you can
specify to enable special features).

CMS transient programs
Transient-area programs are special non-relocatable programs that execute in the Transient Program Area at
location X'00E000'.

Under IDF, these programs are debugged in the same way as user-area programs but the TRANS option
must be specified so that IDF knows that you want to debug a transient.

For example, if MYPROG shown above is a transient, you specify:
ASMIDF myprog (TRANS / fn ft fm (abcd

When debugging a transient-area program, you do not have access to CMS SUBSET during the
debugging session. Running another transient erases your program.

CMS nucleus extensions loaded explicitly
Nucleus extension programs are typically relocatable programs. They are loaded into "high" storage,
typically with the CMS NUCXLOAD command. These programs become an extension to the CMS
nucleus, and remain resident until removed by the CMS NUCXDROP command.

If MYPROG is a nucleus extension that you have loaded with the NUCXLOAD command you invoke
IDF:

ASMIDF myprog (NUCEXT /fn ft fm (abcd

As far as IDF is concerned, this is the only difference between debugging a nucleus extension and a
user-area program. You must load the nucleus extension before invoking IDF.

If the nucleus extension was loaded from a LOADLIB and not a MODULE file, use the LIBE $ option as
well as the NUCEXT option. This tells IDF to not check the MODULE file.

Self-loading CMS nucleus extensions
Some nucleus extensions are self-loading. They obtain nucleus free storage themselves, move in the code,
and declare the nucleus extension. In this case, you must specify the symbol where the code that is
moved into nucleus storage begins.

52 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

For example, if your program is a REXX function package, there is a short piece of code at the start of the
program that loads the remainder as a nucleus extension. The real program begins at symbol FREEGO.
You invoke IDF:

ASMIDF rxmyprog (SELFNUCX FREEGO/fn ft fm (abcd

You must pre-load the nucleus extension before invoking IDF. Since the program is self-loading and may
not yet be operational, you may have to use a two-run technique with IDF:
1. First run:

For the first run, do not declare the program as self-loading. Invoke IDF as if the program was only
going to allocate nucleus storage. Trace through the program up to the point where it normally
branches to the NUCXLOADed code, then QUIT from IDF. At this point, you have effectively
pre-loaded the nucleus extension.

2. Second run:
For the second run, invoke IDF with the SELFNUCX option as shown above. Since you pre-loaded it
in the first run, you can now continue debugging in the NUCXLOADed code.

Note: It may also be possible to use the SET BASE and SELFNUCX VALUE commands to trace a
self-loading nucleus extension in a single run.

Programs requiring environmental setup
RXMYPROG is a REXX function package that permanently loads itself as a system extension when first
executed (for example, a self-loading nucleus extension on CMS). You want to debug it when it is called
by a REXX exec called TESTER, to which you must pass a parameter.

Load the REXX function into storage with the command:
NUCXLOAD rxmyprog

Next, issue the IDF command:
ASMIDF rxmyprog (SELFNUCX FREEGO COMMAND/exec tester a

The COMMAND option
The COMMAND option tells IDF that the string following a slash (/) is not an argument string to be
passed to the target program, but a command that it should issue to begin the debugging operation.

This command is issued with a CMSCALL (SVC 204), so if it is an exec, you must specify that, as shown
in the example above.

You can use the same technique to debug user-area programs that need environmental setup.

When the COMMAND option is specified:
v IDF starts as usual but PER is disabled, and the registers and PSW are not displayed if the Current

Registers window or Old Registers window is open.
v Set a breakpoint at the start of your program, or set a deferred breakpoint with the DBREAK

command, and then press the RUN key.
v IDF then issues the command you specified.
v As part of that command's execution, it should invoke the target program (RXMYPROG in this

example), which is already in storage, defined to IDF, and with the breakpoint installed at or near its
entry-point.

v When the breakpoint is reached, IDF issues a message to you.
PER is now available for use, and the registers and PSW are available for inspection and modification.
Before the first breakpoint IDF keeps PER disabled and does not display the registers and PSW.

Chapter 6. Debugging programs on CMS 53

If practical, when using the COMMAND option, allow the target program to execute through to the point
of its return to its caller (for example, to the EXEC that was invoked by the COMMAND string and
which then invoked the target program). This “normal flow of control” allows any usual
“house-cleaning” needed by the operating system for these call/return linkages. If instead you QUIT
from the target program before its normal return, it may leave a “dangling” call linkage to the target
program, without a corresponding return.

Quitting from a target program before a normal return is a particular problem on CMS. The CMSCALL
(SVC 204) that was used from within IDF to call the COMMAND string is not returned to. If this
“un-paired” SVC linkage remains undetected, you may experience difficulties in CMS.

IDF termination contains special logic to check for this condition (that is, a QUIT from the target program
that was invoked with a COMMAND string), and if detected, IDF:
1. Issues a linemode message warning of the problem.
2. Executes one or more CMSRET RC=999 macros until the original SVC nesting (as saved just before IDF's

CMSCALL to the COMMAND string) is restored.

If the original nesting cannot be restored within 20 calls to CMSRET, or if a CMS ABEND occurs during
this processing, IDF issues another warning message (suggesting that CMS be re-IPLed) and terminates.

Dynamically loaded programs
The IDF DBREAK command provides a powerful deferred breakpoint facility to allow the simple
debugging of programs that are dynamically loaded with standard system calls. See “DBREAK” on page
109 for details.

Attention: If your program is dynamically loaded, and then deleted from storage, any existing
breakpoints are invalidated. Use the IDF DROP MODULE module-name command to notify IDF that the
module definition is no longer valid.

DROP MODULE removes all breakpoints that are currently defined for locations within this module. Any
deferred breakpoints (from previous DBREAK commands) are reactivated in case this module is loaded
into storage again, possibly at a different location.

If your program is dynamically loaded in a manner that is not supported by DBREAK, such as having
your own routine that loads and relocates an object module, you need an alternative solution.

IDF must be able to gain control when your program starts executing.
v Insert an invalid opcode (such as X'0000') at the entry point of your program using one of the

following methods:
– If your program is in assembler, insert a DC X'0000' data directive in its source.
– If a MODULE editor is available, change the opcode at the entry point to X'0000'. Record the

original opcode for later restoration.
– Use a binary editor (such as the ISPF (PDF) editor in HEX mode), to edit the object Module to

change the opcode at the entry point to X'0000'. Record the original opcode for later restoration.

Invoke IDF (you need to use the COMMAND option, as described in “Programs requiring environmental
setup” on page 53), and press the RUN key.

IDF issues the command you specified with the COMMAND option, and your program is dynamically
loaded into memory. It then executes the invalid instruction (X'0000') that you inserted.

IDF issues a message saying that either an operation exception has occurred, or that a breakpoint was
reached.

54 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

At this point:
v If an extra instruction (X'0000') was inserted, you need to open the Current Registers window, and use

IDF's register typeover capability to update the PSW to advance the current execution address by 2.
You can optionally replace the X'0000' by a NOPR R0 (X'0700') instruction. This stops IDF receiving
control at this location if the instruction is executed again.

v If an existing instruction was replaced (by an X'0000'), you can restore the modified instruction to the
original value by opening a Disassembly window or Dump window and using IDF's storage typeover
capability.

You should now be able to continue debugging the program as usual.

For information about source level support for dynamically loaded programs, see “Source level support”
on page 90.

Programs invoked by REXX
Some programs, particularly REXX function packages, need environmental setup for debugging because
they are invoked by the REXX interpreter. There are other special considerations that apply to any
program that is invoked by REXX.

REXX functions must return an EVALBLOK. If you quit from IDF while in the middle of a REXX
function, an error message is issued by the REXX interpreter, and you may have to re-IPL CMS.

There is no practical way for IDF to prevent this from happening.

Programs declaring interrupt routines
If your program declares interrupt routines with ABNEXIT, HNDEXT, or their z/OS equivalents read this
section.

Remember that some interrupt routines are not automatically cleared by CMS at end of command.
ABNEXIT is one of these. If you are in a debugging session and your program has declared an ABNEXIT
routine, if you quit from IDF through PF3 before your program explicitly clears the exit routine, the exit
routine remains in effect even when your program is no longer in memory. The next time you run a
program or invoke IDF for another debugging session, a system abend is most likely, after which you
need to re-IPL CMS.

It is safest if you re-IPL CMS after a debugging session where exit routines were tested. The results after
IDF completes are unpredictable.

Causing a break-in event
A "break-in event" is an event that causes IDF to break in to the target program's execution and regain
control, even though no breakpoint was reached. For example, you might need to cause a break-in event
if your program has gone into an infinite loop that does not contain a breakpoint.

To cause a break-in event, you need some preparation:
v You need to know the address of IDF's ISA (interrupt save area). If you have not specifically set it with

the ISA option when invoking IDF, the default value for the ISA location is in effect, (that is, 16 bytes
at X'500').

v You can cause a break-in event by obtaining the CP command prompt (typically by pressing the PA1
key), and storing any value in the first doubleword of IDF's ISA. For example: "STORE S500 00".
Do not modify the second doubleword of the ISA. Any store operation that changes the first
doubleword (or any part of it) causes a break-in event at the next interrupt.

Chapter 6. Debugging programs on CMS 55

If your program has gone into an infinite loop however, there may not be any interrupts. You can ensure
a steady supply of interrupts by setting the PATH option. This makes IDF take an interrupt after each
target program instruction.

When a break-in event is recognized, IDF displays the IDF user interface screen and issues a message
acknowledging the break-in event. You can then continue the debugging session.

Your program's defined limits
IDF considers "your program" to be any location within the initial target program module, and any more
program modules that you have defined.
v When the target is loaded, IDF determines its limits by examining the module file.
v Extra modules are implicitly defined as the result of the triggering of a deferred breakpoint that was

established with a DBREAK command.
v Extra modules are explicitly defined with the IDF MODULE command:

– If the module is a nucleus extension, establish the module definition with a MODULE NUCEXT
command.

– If the module is a transient program, establish the module definition with a MODULE TRANS
command.

– Define an explicit module origin and size with MODULE BASE and MODULE SIZE commands.
– You can establish an explicit module's CSECT structure with a LOAD SYMBOLS command (see

“LOAD” on page 138).

The origin and size of the programs known to IDF are displayed in the Target Status window, when
open.

Whenever possible, IDF tells you if your program is about to branch to a location outside its defined
limits. This is often useful in finding a "wild branch", for example to location zero.

If you have specified the TRACEALL option, IDF considers the defined limits of your program to begin
at location zero and extend upward to the address specified in the VMSIZE word of NUCON. Thus when
you specify TRACEALL, you can trace through all of virtual memory.

Take care if you attempt to trace through protected (read only) storage.

If you specify the RISK option, IDF considers all of memory to be within your program's defined limits.
Thus you could attempt to step through code in a DCSS that is actually above the address specified in
the VMSIZE word of NUCON.

PER versus non-PER mode
The Break panel provides a means of enabling or disabling what is referred to as "PER mode" operation.
The method of enabling and disabling PER mode is discussed later; this section explains the difference
between the two modes of operation.

PER is an acronym for "Program Event Recorder". It is a feature of the z/Architecture hardware, and is
only available in EC (Extended Control) mode.

When PER mode is enabled through the Break window (the default is for IDF to disable it), IDF puts the
processor in EC mode before turning control over to the target program. This lets IDF use the PER
instruction fetch, register alteration, and storage alteration features to monitor your program's execution.
Single-stepping and breakpoints are available in either mode. Register stops and address stops (storage
alteration stops) are available only in PER mode.

56 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Whenever possible, IDF implements breakpoints by means of inserting an invalid opcode at the break
address. In the case of a read-only DCSS, this is not possible. In this case IDF needs to use PER
instruction fetch events to implement breakpoints. This can only be done when you have set PER=Y.

PER mode's benefits are:
v Register alteration stops (RegStops) are available
v Storage alteration stops (AdStops) are available

Its disadvantage is:
1. the number of instructions executed by IDF when PER=Y is slightly higher than when PER=N.

The disadvantage of non-PER mode is that RegStops and AdStops are not available.

When you debug your program, allowing for these benefits and disadvantages leads to better results and
fewer surprises.

You are not committed to either mode for the entire debugging session. Whenever IDF reaches a
breakpoint and is therefore able to display the Break window, you can change modes.

Programs performing full-screen I/O
Debugging programs that perform full-screen I/O is generally a difficult task, because when the
debugger reaches a breakpoint the screen image created by your program is lost. This can be extremely
frustrating, since you may need to look closely at the screen image to determine whether the program is
operating correctly.

IDF provides the SWAP option to make this kind of debugging easier. If MYPROG was a user-area
program that performed full-screen I/O, you could debug it with:

ASMIDF myprog (SWAP /fn ft fm (abcd

When the SWAP option is in effect, IDF attempts to respect the screen image created by your program. In
single-step mode, IDF does nothing special when SWAP is in effect. However, if you set a breakpoint in
your program and press the RUN key to run the target program to that point, before turning control over
to your program, IDF restores any saved screen image. When the breakpoint is reached, IDF captures the
contents of the screen and saves it before presenting its own display. The same process occurs when you
use the UNTIL command.

To capture the screen image, IDF uses the READ BUFFER command in Character Mode, so even program
symbol sets should be saved.

If you have two terminal sessions available, then you can use the LINE option. The LINE option tells IDF
to use the GRAF at the specified address for its I/O, instead of using the virtual console.

A sample procedure to do this is:
CP DEFINE GRAF xxx
DIAL userid xxx <-- (from the alternate session)
ASMIDF MYPROG (LINE X’xxx’

If you use the LINE option instead of the SWAP option, your debug session is faster, because there is no
need to constantly capture and re-write your program's screen.

To see the saved screen at a breakpoint, issue the SWAP command. To return to the IDF screen, just press
ENTER.

Using a message-trapping tool
Many users run a message-trapping tool as a normal part of their working environment.

Chapter 6. Debugging programs on CMS 57

IDF sets up a dummy HNDEXT routine while it is in control, so that if a clock or other external interrupt
occurs, the "DEBUG ENTERED" scenario is avoided.

If the target program sets up an HNDEXT routine, that new routine supersedes IDF's dummy handler
without interfering with IDF operation. If IDF was invoked by another program that had set up a
HNDEXT routine, IDF's dummy handler supersedes it.

Therefore, if you use a message-trapping tool that relies on HNDEXT processing to gain control and thus
intercept messages, you should disable it before starting IDF to make sure you do not lose any messages.

Many message trappers "steal" the external new PSW and perform their own interrupt handling at that
level. If the message trapper you use does this, it is likely that it can coexist with IDF. It is suggested that
you test it to make sure, if you are concerned about the possibility of losing messages that arrive during
a debugging session.

IDF does not affect the MSG setting, so if you do not use a message-trapping tool, none of this should
affect you.

58 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 7. Debugging programs on z/VSE

On z/VSE, IDF supports debugging of phases that are loaded into the same partition as IDF.

Note: Phases loaded into the SVA or Logical Transients cannot be debugged.

Data set naming conventions
Certain IDF commands cause data to be written to or read from files. Since IDF was originally written to
run on CMS, the commands are oriented towards the naming conventions used by the CMS file system.

The mapping of the CMS file conventions to z/VSE is:

CMS Equivalent on z/VSE

fn z/VSE librarian member name.

ft DLBL name, which in turn points to the z/VSE data set name

fm Not used on z/VSE

On z/VSE, you must reference files using DLBL statements (JCL), and libraries using LIBDEF statements.

How to specify parameters for your program
To pass parameters to your program, include them in the PARM= option on the EXEC ASMIDF
statement.
// EXEC ASMIDF,PARM=’phasename (LU luname idf-options/phase-parameters’

where:

phasename
Is the name of the phase to be debugged

luname
Is the VTAM LU name of the terminal you use to debug this phase

idf-options
Are options to be passed to IDF

phase-parameters
Are parameters to be passed to your phase

Loading programs
The target program being debugged is loaded from the first sublibrary in the LIBDEF PHASE SEARCH
list in which it occurs.

JCL requirements
Because IDF runs from JCL, you need to specify any files that your program needs in that JCL. You need
to allocate optional IDF files, such as REXX customization macros and IDF Language extract files. Even
though IDF is started as a batch job, it needs a terminal (defined by its VTAM logical unit (LU) name) to
run. This terminal is specified through the LUTERM option in the PARM value of the // EXEC ASMIDF
statement. The LUTERM is the name used by VTAM to define the LU to the network, and is used by IDF
to address the terminal.

© Copyright IBM Corp. 1992, 2015 59

JCL example:
// SETPFIX LIMIT=24K
// LIBDEF PHASE,SEARCH=(my.library,HLASM.LIBRARY)
// LIBDEF PROC,SEARCH=(MY.PROCLIB,HLASM.LIBRARY)
// EXEC ASMIDF,PARM=’MYPROG (LU MYterm /phase-parameters’
/*

The following JCL statements are required:

SETPFIX LIMIT
Sets the page fix limit. IDF needs this set to 24K to allow the product exit to function correctly.

LIBDEF PHASE
Defines the library which contains the phase map created by ASMLKEDT and the target phase.

LIBDEF PROC
Defines the procedure library which contains any REXX procedures that might be used.

EXEC ASMIDF
Executes the program ASMIDF (IDF) using the parameters specified with the PARM option.

Dynamically loaded programs
The IDF DBREAK command provides a powerful deferred breakpoint facility to allow the simple
debugging of programs that are dynamically loaded using standard system calls. See “DBREAK” on page
109 for details.

Attention: If your program is dynamically loaded, and then deleted from storage, any existing
breakpoints are invalidated. Use the IDF DROP MODULE command to notify IDF that the module
definition is no longer valid.

DROP MODULE removes all breakpoints that are currently defined for locations within this module. Any
deferred breakpoints (from previous DBREAK commands) are reactivated in case this module is loaded
into storage again, possibly at a different location.

If your program is dynamically loaded in a manner that is not supported by DBREAK (such as having
your own routine that loads and relocates an object module), you need to use an alternative solution.
v IDF needs to gain control when your program starts executing.

You should insert an invalid opcode (such as X'0000') at the entry point of your program using one of
the following methods:
– If your program is written in assembler, insert a DC X'0000' data directive in your program source.
– If a phase editor is available, change the opcode at the entry point to X'0000'. Record the original

opcode for later restoration.
– Use a binary editor to edit the object Module to change the opcode at the entry point to X'0000'.

Record the original opcode for later restoration.
v Invoke IDF and press the RUN key, on the terminal that you have specified in the LUNAME parameter

on the EXEC ASMIDF statement.
v Your program is dynamically loaded into memory and executes the instruction (X'0000') that you

inserted.
v IDF issues a message saying that an operation exception has occurred.
v At this point:

– If an extra instruction (X'0000') was inserted, you need to open the Current Registers window, and
use IDF's register typeover capability to update the PSW to advance the current execution address
by 2.
You may optionally replace the X'0000' by a NOPR R0 (X'0700') instruction. This stops IDF receiving
control at this location if the instruction is executed again.

60 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

– If an existing instruction was replaced (by X'0000'), you can restore the modified instruction to its
original value by opening a Disassembly window or Dump window and using IDF's storage
typeover capability.

v You should now be able to continue debugging the program as usual.

For information about source level support for dynamically loaded programs, see “Source level support”
on page 90.

Running with subtasks
IDF detects program loads, program checks and breakpoints defined by commands for all the tasks
running within a partition. To achieve this IDF uses a locking mechanism to single thread each event
detected. The lock is in effect from the time the event is detected and is released when control is returned
to the respective task. If IDF is interrupted while the LOCK is in effect by a STXIT IT, or STXIT OC for
example, a deadlock situation may occur. Take care, when you are debugging subtasks and interruption
routines are in effect, that you do not interrupt the IDF session.

Running with CICS
CICS uses subtasks, therefore to avoid the deadlocks described in the previous section you should run
CICS with:
1. Run away task inoperative (that is, SIT option ICVR=0).
2. Stall Purge should be disabled for all transactions that run during the debugging session.

When issuing MSG CICS partition console commands on debug sessions, do not interrupt the IDF session.

Using ASMIDF to debug a CICS/VSE application
ASMIDF does not run under CICS. It is possible, however, to run CICS/VSE under ASMIDF as for a
batch application. Here's how:
1. Ensure the CICS job's LIBDEF search list includes the Toolkit and HLASM sublibraries plus any

libraries that contain REXX procs, ASMLANGX file, and so on, to be used in the IDF session.
2. Replace the EXEC DFHSIP statement with the following:

// SETPFIX LIB=144K
// EXEC ASMIDF,SIZE=9M,PARM=DFHSIP (LU luid/SI’ X

DSPACE=2M
SIT=??
DCT=??
GRPLIST=VSELST
START=AUTO
EXTSEC=NO
SVD=NO
ICVR=0
TCT=??
APPLID=??
$END

where ?? are installation dependent luid is the LU of the terminal at which the IDF session is to be
run ICVR=0 is required

3. When the IDF command line appears, issue a deferred breakpoint for the application program that is
to be debugged: DBREAK (program-name.)+x’20’

4. Allow IDF to RUN so that CICS can start.
5. Once CICS is up, run the transaction that involves the program for which the DBREAK has been

issued. IDF should then display a breakpoint at entry to the program.

Chapter 7. Debugging programs on z/VSE 61

Debugging STXIT code
STXIT PC

IDF traps program checks before any STXIT code is invoked. This lets you analyze the initial
program check. If you have an active STXIT PC you can then set breakpoints in your STXIT PC
code and use the IDF RUN command to break in the STXIT PC code.

Note: You may need to issue the RUN command twice when a branch address is invalid, before
the STXIT PC code is invoked.

STXIT AB
IDF lets you debug your STXIT AB routines if you set breakpoints in them. Care should be taken
when debugging STXIT AB routines with subtasks. If another event is trapped by IDF at the
same time as the STXIT AB breakpoint, IDF may terminate the session due to a possible deadlock
situation.

STXIT IT, OC
IDF lets you debug your STXIT IT, OC routines if you set break points in them. Refer to
“Running with subtasks” on page 61 for considerations when running with subtasks.

Causing a break-in event
A break-in event is an event that causes IDF to break in to the target program's execution and regain
control, even though no breakpoint was reached. For example, you might need to cause a break-in event
if your program has gone into an infinite loop that does not contain a breakpoint.

When IDF initially invokes your program, it has established a STXIT OC exit. If your program has not
established its own STXIT OC exit (which overrides the IDF STXIT OC), IDF should receive control when
the console command 'MSG partition ID' is entered. This may cause corruption of any open data sets

When a break-in event is recognized, IDF displays the IDF user interface screen as usual and issues a
message acknowledging the event. You can then continue your debugging session.

Your program's defined limits
IDF considers "your program" to be any location within the initial target phase, and any more phases that
you have defined.
v When the target is loaded, IDF determines its limits by examining the directory entry for the phase.
v Extra modules are implicitly defined as the result of the triggering of a deferred breakpoint that was

established with a DBREAK command.
v Extra phases are explicitly defined with the IDF MODULE command:

– If the module is described in the phase load trace table, establish the module definition with a
MODULE command.

– Define an explicit module origin and size with MODULE BASE and MODULE SIZE commands.
– You can establish an explicit module's CSECT structure with a LOAD SYMBOLS command (see

“LOAD” on page 138).

The origin and size of the programs known to IDF are displayed in the Target Status window, when
open.

Whenever possible, IDF notifies you if your program is preparing to branch to a location outside its
defined limits. This is often useful in locating a "wild branch", for example to location zero.

62 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If you have specified the TRACEALL option, IDF considers the defined limits of your program to begin
at location zero and extend upward to the end of storage. Thus when you specify TRACEALL, you can
trace through all of virtual memory.

Care should be taken if you attempt to trace through protected (read only) storage.

Programs performing full-screen I/O
Debugging programs that perform full-screen I/O is generally a difficult task, because when the
debugger reaches a breakpoint, the screen image created by your program is lost. This can be extremely
frustrating, since you may need to look closely at the screen image to determine whether the program is
operating correctly.

IDF provides the SWAP option to make this kind of debugging easier. If MYPROG was a program that
performed full-screen I/O, you could debug it with the following IDF command:
// EXEC ASMIDF PARM=’myprog (LU myterminal SWAP /Parms for MYPROG’

When the SWAP option is in effect, IDF attempts to respect the screen image created by your program. In
single-step mode, IDF does nothing special. However, if you set a breakpoint in your program and press
the RUN key to run the target program to that point, before turning control over to your program, IDF
restores any saved screen image. Then when the breakpoint is reached, IDF captures the contents of the
screen and saves it before presenting its own display. The same process occurs when you use the UNTIL
command.

To capture the screen image, IDF uses the READ BUFFER command in Character Mode, so even program
symbol sets should be saved.

To see the saved screen at a breakpoint, issue the SWAP command. To return to the IDF screen, just press
enter.

Chapter 7. Debugging programs on z/VSE 63

64 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 8. Windows, PF keys, cursor positioning, and other
operational details

This chapter provides more detail on the operation of IDF.

Windows
IDF has many different windows:
v AdStops window
v Additional Floating-Point Registers window
v Break window
v Current Registers window
v Disassembly window
v Dump window
v Entry Point Names window
v LSM Information window
v Minimized Windows Viewer
v Options window
v Old Registers window
v Skipped Subroutines window
v Target Status window

There is also a Command window which is always displayed. It contains the command input area, the
message display areas, and, by default, the settings of PF keys 1 to 12. Use the SET PFKDISP command
to customize the number of PF key settings displayed. The size of the Command window varies,
depending on the number of PF key settings displayed. This is the only window displayed by default
when IDF is started.

Each window when displayed is surrounded by a border that includes a title describing that window.
The title includes the window's window number. The window number is an integer assigned in sequence
as windows are opened. When a window is closed, the window numbers of open windows are
reassigned.

By default, when windows are opened, IDF positions them on the screen so that their top border overlays
the bottom border of the window last opened. The exceptions to this rule are:
v AdStops window
v Break window
v Skipped Subroutines window

These windows are placed on the right of the screen.

As windows are opened they are added to the bottom of the screen. Use the ORDER command to move
a window to the front of the list of windows being displayed.

The Additional Floating-Point Registers window, Current Registers window, Old Registers window, the
Options window, and Target Status window are of a fixed size when opened.

By default, any open Disassembly windows, Dump windows, and LSM Information windows share the
space on the screen not used by the other windows. They are automatically re-sized every time some
window opens or closes. LSM Information windows use at most enough space to contain the information
generated by the command.

© Copyright IBM Corp. 1992, 2015 65

Change this default behavior with the NOAUTOSZ option (AUTOSIZE is the default), or with the SET
OPTION OFF AUTOSIZE command.

When AUTOSIZE is off, all open windows are placed in the upper left corner of the screen.

You can position windows manually with the MOVE command.

AdStops window (CMS only)
The AdStops window can only be opened when PER operation is active. It is opened by issuing the
ADSTOPS command without providing any arguments. To close the window, issue the ADSTOPS
command again without any arguments or issue the CLOSE command against that window. When the
AdStops window is opened, it is positioned at the bottom right corner of the screen, and overlays any
information there.

Alternatively, you can use the REGSTOPS command.

The AdStops window lets you set and reset register alteration stops (RegStops) or clear storage alteration
stops (AdStops).

To clear a storage alteration stop, just place the cursor on the field describing the stop you want to clear,
and either press the ERASE-EOF key or overtype the field with blanks. You must clear both the start and
the end address.

Change the register stop settings by overtyping the values shown.

Additional Floating-Point Registers window
Open the Additional Floating-Point Registers window by issuing the AFPR command. Close the window
by issuing the AFPR command again, or by issuing the CLOSE command against that window.

The window lists the active contents of the Floating-Point Control register, and the Additional Binary
Floating-Point registers, that is, FPR1, 3, 5, 7 to 15.

┌01─AdStops──┐
│ PER Register Stop (RegStop) on: │
│ R0 N R4 N R8 N R12 N │
│ R1 N R5 N R9 Y R13 N │
│ R2 N R6 N R10 N R14 N │
│ R3 Y R7 N R11 N R15 N │
│ │
│ PER Address Stop (AdStop) ranges: │
│ 1. 000202E0 (SUBJOB) @DL00101 │
│ 00020306 (SUBJOB) @DE00103 │
│ 2. Free │
│ Free │
│ 3. Free │
│ Free │
│ 4. Free │
│ Free │
└──┘

Figure 2. AdStops window

66 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

You can change the contents of the registers by overtyping the hex values displayed.

Break window
Open the Break window by issuing the BREAK command without providing any arguments. Close the
window by issuing the BREAK command again without any arguments or by issuing the CLOSE
command against that window. When the Break window is opened, it is positioned at the top right
corner of the screen, overlaying any existing information. It uses only as many rows as needed to display
the breakpoint information.

The window lists the active breakpoints and watchpoints. For watchpoints, the address is preceded by a
"w" and the condition are displayed on the next line. Any commands associated with the breakpoint or
watchpoint are shown on the following line. If there are more breakpoints or watchpoints than fit on the
screen the NEXT and PREVIOUS commands scroll forwards and backwards through the list.

The Break window also lets you clear breakpoints. Breakpoints remain in effect until you explicitly clear
them.

To clear a breakpoint, place the cursor on the field describing the breakpoint you want to clear, and either
press the ERASE-EOF key or overtype the field with blanks.

┌02─Additional Floating Point Registers ├─────────────────────────────────────┐
│ Floating Point Control Register 00000000 │
│ FPR01 0000000000000000 FPR08 0000000000000000 FPR09 000000000000000 │
│ FPR03 0000000000000000 FPR10 0000000000000000 FPR11 000000000000000 │
│ FPR05 0000000000000000 FPR12 0000000000000000 FPR13 000000000000000 │
│ FPR07 0000000000000000 FPR14 0000000000000000 FPR15 000000000000000 │
└───┘

Figure 3. An example of the Additional Floating-Point Registers window

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 67

z/VM The Break window lets you enable or disable SVC trapping and PER operation. Change the SVC
and PER settings by overtyping the values shown.

Current Registers window
The Current Registers window is opened by entering the REGS or REGS64 command. It is closed by
issuing the REGS or REGS64 command again or by issuing the CLOSE command against that window.

By default it displays the current PSW, the current general purpose and floating point registers. If the
CREGS command was issued the current control registers are displayed. If the AREGS command was
issued the current access registers are displayed.

┌─01─Current Registers───┬05─Break Points───────────────────────────────────────┐
│ (TCAT) @PROLOG+44 │ w00057752 (TCAT) @DL00029 │
│ R0 00009025 R1 0001 │ Condition: = c r3,=f’3’ │
│ R4 FEFE040F R5 FEFE │ 00057788 (TCAT) LOCRET │
├ R8 FEFE080F R9 0005 └──┤
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├─02─Old Registers──┤
│ (TCAT) @PROLOG+40 PSW 078D10008005771E (CC mask= 4 L) │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├─03─Disassembly──┤
│ (TCAT) @PROLOG+32 │
│ 00057716 92C1 C0CA MVI CTGTYPE,193 │
│ 0005771A 943F C0BA NI CTGOPTN3,63 │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ 00057722 4190 07D8 LA R9,2008 │
│ 00057726 5090 C108 ST R9,CATWRK │
│ 0005772A 1F88 SLR R8,R8 │
│ 0005772C 5080 C10C ST R8,CATWRKUS │
│ 00057730 4190 C108 LA R9,CATWRK │
│ 00057734 5090 C0C4 ST R9,CTGWKA │
│ 00057738 4170 0002 LA R7,2 │
├─04─Storage Dump───┤
│ (TCAT) CTGOPTN3 │
│ 0005779A 21 . │
│ (TCAT) CTGOPTN4 │
│ 0005779B 00 . │
│ (TCAT) CTGENT │
│ 0005779C 000577BC │
│ (TCAT) CTGCAT │
│ 000577A0 00000000 │
│ (TCAT) CTGWKA │
│ 000577A4 00000000 │
│ (TCAT) CTGDSORG │
└───┘

==>

1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve

Figure 4. An example of the Break window overlaying other windows

┌01─Current Registers──┐
│ (TCAT) @PROLOG+84 PSW 078D20008005774A (CC mask=2 H) │
│ R0 00009025 R1 000120D4 R2 00057FC0 R3 00000001 FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 00000001 R7 00000002 FPR2 0000000000000000 │
│ R8 00000000 R9 000577E8 R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
└──┘

Figure 5. Current Registers window, with General Purpose and Floating Point Registers

68 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

You can modify the contents of the PSW or registers whenever they are displayed by overtyping the
current information with the new value.

Disassembly window
Open a Disassembly window with the DISASM command or the OPEN DISASM command. Close it by
issuing the DISASM command without an address or by issuing the CLOSE command against that
window. Many Disassembly windows can be open. Each Disassembly window can display storage and
source at a different address.

In a Disassembly window, instructions are shown disassembled to their approximate assembler syntax.
You can change the contents of the locations displayed by overtyping the hex values shown on the left
side of the screen. When storage that cannot be disassembled is displayed, up to 48 bytes (three rows) are
displayed in dump format in both hexadecimal and character form. The character form is EBCDIC unless
the ASCII option is ON. Modify this storage by overtyping either the hexadecimal or the character
portions. Characters overtyped in the character portion are EBCDIC unless the ASCII option is ON. If you
have specified the PATH or PATHFILE options, a column of numbers is displayed at the right side of the
screen. These numbers are execution counts for the instructions they are next to.

To change the location counter such that it reflects the original location counter of the CSECT as it
appears in the assembler listing, use the OFFSET command to set the offset to the starting location of the
CSECT within the modules. It may be necessary to set the OFFSET option on (use the OPTIONS
command to review the current options).

CSECT names and external symbols are shown intensified (or in the heading color) and the next
instruction to be executed is shown intensified (or in the message color). If a breakpoint was set for an

┌01─Current Registers──┐
│ Access Registers: PSW 03E800008005774A (CC mask=2 H) │
│ A0 00000000 A1 00000001 A2 00000000 A3 00000000 │
│ A4 00000000 A5 00000000 A6 00000000 A7 00000000 │
│ A8 00000000 A9 00000000 A10 00000000 A11 00000000 │
│ A12 00000000 A13 00000000 A14 00000000 A15 00000000 │
└──┘

Figure 6. Current Registers window, with Access Registers

┌01─Current Registers──┐
│ Control Registers: PSW 03E800008005774A (CC mask=2 H) │
│ C0 000100E0 C1 00000000 C2 00000000 C3 00000000 │
│ C4 00000000 C5 00000000 C6 FF000000 C7 00000000 │
│ C8 00000000 C9 00000000 C10 00000000 C11 00000000 │
│ C12 00000000 C13 00000000 C14 1F000000 C15 00000000 │
└──┘

Figure 7. Current Registers window, with Control Registers

┌01─Current Registers──┐
│ (TESTVAR) TESTVAR │
│ EPSW FF00000000000000 000000000000ACC0 (CC mask=8 E) │
│ R0 00000000 FEFE000F R8 00000000 FEFE080F FPR0 0000000000000000 │
│ R1 00000000 0000D024 R9 00000000 FEFE090F FPR2 0000000000000000 │
│ R2 00000000 FEFE020F R10 00000000 FEFE0A0F FPR4 0000000000000000 │
│ R3 00000000 FEFE030F R11 00000000 FEFE0B0F FPR6 0000000000000000 │
│ R4 00000000 FEFE040F R12 00000000 0000ACC0 │
│ R5 00000000 FEFE050F R13 00000000 0000D058 │
│ R6 00000000 FEFE060F R14 00000000 00090466 │
│ R7 00000000 FEFE070F R15 00000000 0000ACC0 │
└──┘

Figure 8. Current Registers window, as opened with REGS64

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 69

instruction, then its address (at the left side of the screen) is shown intensified (or in the heading color). If
a watchpoint was set for an instruction, then its address is shown intensified (or in the heading color)
and is preceded by a 'w'. If an instruction starts a subroutine that is being skipped, then its address is
shown intensified (or in the heading color) and is preceded by an 's'.

Branch instructions are disassembled to their appropriate extended mnemonics unless the NOBCX option
is specified.

All open Disassembly windows share any space on the screen not occupied by the Additional
Floating-Point Registers window, the Current Registers window, the Old Registers window, the Options
window, and the Target Status window with any open Dump windows, and LSM Information windows.
Use the SIZE and MOVE commands to change the size and location of any open window.

Dump window
Open a Dump window by issuing the DUMP command or the OPEN DUMP command. Close it by
issuing the DUMP command without an address or by issuing the CLOSE command against that
window. Many Dump windows can be open. Each Dump window can display storage at a different
address. The Dump window provides either a symbolic or an unformatted dump of storage. The dump
format is toggled by the DUMPMODE command.

┌01─Disassembly──┐
│ (RXLOCFN) RXLOCFN RXLOCFN CSECT │
│ 00057F88 47F0 F016 B RXLOCFN+22 │
│ 00057F8C 10D9 LPR R13,R9 │
│ 00057F8E E7D3 D6C3C6D5 404040F8 F94BF1F9 │ XLOCFN 89.19 │
│ 00057F9C F400 │ 4. │
│ 00057F9E 90EC D00C STM R14,R12,12(R13) │
│ 00057FA2 18CF LR R12,R15 │
│ 00057FA4 1FFF SLR R15,R15 │
│ 00057FA6 43F0 CBD4 IC R15,RXLOCFN+3028 │
│ 00057FAA 1F00 SLR R0,R0 │
│ 00057FAC BF07 CBD5 ICM R0,B’0111’,RXLOCFN+3029 │
│ 00057FB0 18E0 LR R14,R0 │
│ 00057FB2 4100 0FF8 LA R0,4088 │
│ 00057FB6 190E CR R0,R14 │
│ 00057FB8 47B0 C036 BNL RXLOCFN+54 │
│ 00057FBC 180E LR R0,R14 │
│ 00057FBE 0700 NOPR │
│ 00057FC0 47F0 C040 B RXLOCFN+64 │
│ 00057FC4 00000200 │ │
│ 00057FC8 89F0 0008 SLL R15,8 │
│ 00057FCC BFFD C03C ICM R15,B’1101’,RXLOCFN+60 │
│ 00057FD0 1B11 SR R1,R1 │
│ 00057FD2 0A78 SVC 120 │
│ 00057FD4 1A10 AR R1,R0 │
│ 00057FD6 1B1E SR R1,R14 │
│ 00057FD8 1B0E SR R0,R14 │
│ 00057FDA 1300 LCR R0,R0 │
│ 00057FDC 58E0 D00C L R14,12(,R13) │
│ 00057FE0 5000 1000 ST R0,0(,R1) │
│ 00057FE4 18B1 LR R11,R1 │
│ 00057FE6 50D0 B004 ST R13,4(,R11) │
│ 00057FEA 50B0 D008 ST R11,8(,R13) │
│ 00057FEE 98F1 D010 LM R15,R1,16(R13) │
│ 00057FF2 18DB LR R13,R11 │
│ 00057FF4 1871 LR R7,R1 │
│ 00057FF6 92E8 B064 MVI 100(R11),232 │
└──┘

Figure 9. Disassembly window

70 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If a non-zero ALET was provided for a Dump window, then that window displays storage from the
dataspace identified by the ALET. The storage in the dataspace is dumped in the unformatted style
regardless of the current dump mode selected. The ALET specified is displayed on the first row of the
Dump window.

You specify an ALET for a Dump window with the SET ALET command, by using an access register in
an expression, or by placing the cursor in an access register in the Current Registers window or Old
Registers window.

All open Dump windows share any space on the screen not occupied by the Additional Floating-Point
Registers window, the Current Registers window, the Old Registers window, the Options window, and
the Target Status window with any open Disassembly windows, and LSM Information windows. Use the
SIZE and MOVE commands to change the size and location of any open window.

The symbolic format shows data areas with their symbolic names indicated. In addition, the symbolic
dump format shows only the memory area that applies.

For example, if a variable is a halfword that is not aligned on a fullword boundary, IDF uses two lines to
show it. The first line shows the CSECT and name of the variable. The second line shows the content of
the variable in both hexadecimal and character formats. The character format is EBCDIC unless the ASCII
option is ON. Since the variable is not aligned on a fullword boundary, the first two bytes of the word in
which the variable is found are not shown, and the two bytes that are shown are shifted right on the
screen by that amount.

The advantage of this dump format is that you see the variable and its limits, without hunting for them.
The disadvantage is that less is shown on each screen, since a line is taken for each new variable's name.

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 71

The unformatted dump provides the "traditional" memory dump display.

┌01─Storage Dump ──┐
│ (EXAMPLE1) EXAMPLE1 │
│ 00010408 47F0F0E8 D3898385 95A28584 40D481A3 │ å00YLicensed Mat │ │
│ 00010418 85998981 93A24060 40D79996 978599A3 │ erials - Propert │ │
│ 00010428 A8409686 40C9C2D4 40C5E7C1 D4D7D3C5 │ y of IBM EXAMPLE │ │
│ 00010438 F1404DC3 5D40C396 97A89989 8788A340 │ 1 (C) Copyright │ │
│ 00010448 C9C2D440 C3D6D9D7 40F1F9F9 F56BF2F0 │ IBM CORP 1995,20 │ │
│ 00010458 F0F44B40 C1939340 D9898788 A3A240D9 │ 04. All Rights R │ │
│ 00010468 85A28599 A585844B 40E4E240 C796A585 │ eserved. US Gove │ │
│ 00010478 99959485 95A340E4 A28599A2 40D985A2 │ rnment Users Res │ │
│ 00010488 A3998983 A3858440 D9898788 A3A24060 │ tricted Rights - │ │
│ 00010498 40E4A285 6B4084A4 97938983 81A38996 │ Use, duplicatio │ │
│ 000104A8 95409699 408489A2 839396A2 A4998540 │ n or disclosure │ │
│ 000104B8 9985A2A3 998983A3 85844082 A840C7E2 │ restricted by GS │ │
│ 000104C8 C140C1C4 D740E283 888584A4 938540C3 │ A ADP Schedule C │ │
│ 000104D8 9695A399 8183A340 A689A388 40C9C2D4 │ ontract with IBM │ │
│ 000104E8 40C39699 974B4000 90ECD00C 18CF41E0 │ Corp. .°Ö}..õ \ │ │
│ 000104F8 F11050D0 E00450E0 D00818DE 58F0F158 │ 1.&}\.&\}..úì01ì │ │
│ 00010508 05EF58D0 D00450F0 D01098EC D00C07FE │ .Õì}}.&0}.qÖ}..Ú │ │
│ 00010518 00000000 00000000 00000000 00000000 │ │ │
│ 00010528 00000000 00000000 00000000 00000000 │ │ │
│ 00010538 00000000 00000000 00000000 00000000 │ │ │
│ 00010548 00000000 00000000 00000000 00000000 │ │ │
│ 00010558 00000000 00000000 00010568 00000000 │Ç.... │ │
│ (EXAMPLE2) EXAMPLE2 │
│ 00010568 47F0F016 C5E7C1D4 D7D3C5F2 40F2F0F0 │ å00.EXAMPLE2 200 │ │
│ 00010578 F4F0F3F0 F30090EC D00C18CF 41E0F114 │ 40303.°Ö}..õ \1. │ │
│ 00010588 50D0E004 50E0D008 18DE17FF 58D0D004 │ &}\.&\}..ú..ì}}. │ │
│ 00010598 50F0D010 98ECD00C 07FE90EC D00C18CF │ &0}.qÖ}..Ú°Ö}..õ │ │
│ 000105A8 41E0F114 50D0E004 50E0D008 18DE17FF │ \1.&}\.&\}..ú.. │ │
│ 000105B8 58D0D004 50F0D010 98ECD00C 07FE90EC │ ì}}.&0}.qÖ}..Ú°Ö │ │
│ 000105C8 D00C18CF 41E0F114 50D0E004 50E0D008 │ }..õ \1.&}\.&\}. │ │
│ 000105D8 18DE17FF 58D0D004 50F0D010 98ECD00C │ .ú..ì}}.&0}.qÖ}. │ │
│ 000105E8 07FE90EC D00C18CF 41E0F114 50D0E004 │ .Ú°Ö}..õ \1.&}\. │ │
│ 000105F8 50E0D008 18DE17FF 58D0D004 50F0D010 │ &\}..ú..ì}}.&0}. │ │
│ 00010608 98ECD00C 07FE90EC D00C18CF 41E0F114 │ qÖ}..Ú°Ö}..õ \1. │ │
│ 00010618 50D0E004 50E0D008 18DE17FF 58D0D004 │ &}\.&\}..ú..ì}}. │ │
│ 00010628 50F0D010 98ECD00C 07FE90EC D00C18CF │ &0}.qÖ}..Ú°Ö}..õ │ │
│ 00010638 41E0F114 50D0E004 50E0D008 18DE17FF │ \1.&}\.&\}..ú.. │ │
└──┘

Figure 10. Formatted Dump window

72 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Regardless of the dump format, you can modify memory by overtyping the data shown, in either the
hexadecimal or the character portions of the display. Characters overtyped in the character portion are
EBCDIC unless the ASCII option is ON.

Entry Point Names window
Open an Entry Point Names window by issuing the EPNAMES command. Close it by issuing the
EPNAMES command.

The Entry Point Names window has a fixed size. Use the PREVIOUS and NEXT commands or PF keys to
scroll to the next or previous page, provided the cursor is in the Entry Point Names window when the
command is issued or the PF key pressed. The window lists the program name, entry point name, load
address and long entry point name for each entry point in the module being debugged.

You can change the short entry point name by overtyping it.

┌01─Storage Dump───┐
│ 00010408 47F0F0E8 D3898385 95A28584 40D481A3 │ å00YLicensed Mat │ │
│ 00010418 85998981 93A24060 40D79996 978599A3 │ erials - Propert │ │
│ 00010428 A8409686 40C9C2D4 40C5E7C1 D4D7D3C5 │ y of IBM EXAMPLE │ │
│ 00010438 F1404DC3 5D40C396 97A89989 8788A340 │ 1 (C) Copyright │ │
│ 00010448 C9C2D440 C3D6D9D7 40F1F9F9 F56BF2F0 │ IBM CORP 1995,20 │ │
│ 00010458 F0F44B40 C1939340 D9898788 A3A240D9 │ 04. All Rights R │ │
│ 00010468 85A28599 A585844B 40E4E240 C796A585 │ eserved. US Gove │ │
│ 00010478 99959485 95A340E4 A28599A2 40D985A2 │ rnment Users Res │ │
│ 00010488 A3998983 A3858440 D9898788 A3A24060 │ tricted Rights - │ │
│ 00010498 40E4A285 6B4084A4 97938983 81A38996 │ Use, duplicatio │ │
│ 000104A8 95409699 408489A2 839396A2 A4998540 │ n or disclosure │ │
│ 000104B8 9985A2A3 998983A3 85844082 A840C7E2 │ restricted by GS │ │
│ 000104C8 C140C1C4 D740E283 888584A4 938540C3 │ A ADP Schedule C │ │
│ 000104D8 9695A399 8183A340 A689A388 40C9C2D4 │ ontract with IBM │ │
│ 000104E8 40C39699 974B4000 90ECD00C 18CF41E0 │ Corp. .°Ö}..õ \ │ │
│ 000104F8 F11050D0 E00450E0 D00818DE 58F0F158 │ 1.&}\.&\}..úì01ì │ │
│ 00010508 05EF58D0 D00450F0 D01098EC D00C07FE │ .Õì}}.&0}.qÖ}..Ú │ │
│ 00010518 00000000 00000000 00000000 00000000 │ │ │
│ 00010528 00000000 00000000 00000000 00000000 │ │ │
│ 00010538 00000000 00000000 00000000 00000000 │ │ │
│ 00010548 00000000 00000000 00000000 00000000 │ │ │
│ 00010558 00000000 00000000 00010568 00000000 │Ç.... │ │
│ 00010568 47F0F016 C5E7C1D4 D7D3C5F2 40F2F0F0 │ å00.EXAMPLE2 200 │ │
│ 00010578 F4F0F3F0 F30090EC D00C18CF 41E0F114 │ 40303.°Ö}..õ \1. │ │
│ 00010588 50D0E004 50E0D008 18DE17FF 58D0D004 │ &}\.&\}..ú..ì}}. │ │
│ 00010598 50F0D010 98ECD00C 07FE90EC D00C18CF │ &0}.qÖ}..Ú°Ö}..õ │ │
│ 000105A8 41E0F114 50D0E004 50E0D008 18DE17FF │ \1.&}\.&\}..ú.. │ │
│ 000105B8 58D0D004 50F0D010 98ECD00C 07FE90EC │ ì}}.&0}.qÖ}..Ú°Ö │ │
│ 000105C8 D00C18CF 41E0F114 50D0E004 50E0D008 │ }..õ \1.&}\.&\}. │ │
│ 000105D8 18DE17FF 58D0D004 50F0D010 98ECD00C │ .ú..ì}}.&0}.qÖ}. │ │
│ 000105E8 07FE90EC D00C18CF 41E0F114 50D0E004 │ .Ú°Ö}..õ \1.&}\. │ │
│ 000105F8 50E0D008 18DE17FF 58D0D004 50F0D010 │ &\}..ú..ì}}.&0}. │ │
│ 00010608 98ECD00C 07FE90EC D00C18CF 41E0F114 │ qÖ}..Ú°Ö}..õ \1. │ │
│ 00010618 50D0E004 50E0D008 18DE17FF 58D0D004 │ &}\.&\}..ú..ì}}. │ │
│ 00010628 50F0D010 98ECD00C 07FE90EC D00C18CF │ &0}.qÖ}..Ú°Ö}..õ │ │
│ 00010638 41E0F114 50D0E004 50E0D008 18DE17FF │ \1.&}\.&\}..ú.. │ │
│ 00010648 58D0D004 50F0D010 98ECD00C 07FE90EC │ ì}}.&0}.qÖ}..Ú°Ö │ │
│ 00010658 D00C18CF 41E0F114 50D0E004 50E0D008 │ }..õ \1.&}\.&\}. │ │
└──┘

Figure 11. Unformatted Dump window

┌03─Entry point name──More:+-─┐
│ Program TESTIDF Entry short name TESTIDF Address 00018EF8 │
│Long name TESTIDF │
└───┘

Figure 12. Entry Point Names window

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 73

LSM Information window
Open an LSM Information window after IDF Language extract data is loaded. Open it with an ARRAY,
STRUCTURE, or VARIABLE command, a LANGUAGE command that causes IDF to open this window,
or the OPEN command. Close it with an ARRAY, STRUCTURE, or the VARIABLE command without any
arguments or by issuing the CLOSE command against that window. Many LSM Information windows
can be opened. Each LSM Information window can display different information.

All open LSM Information windows share any space on the screen not occupied by the Additional
Floating-Point Registers window, the Current Registers window, the Old Registers window, the Options
window, and the Target Status window with any open Disassembly windows, and Dump windows. Use
the SIZE and MOVE commands to change the size and location of any open window.

The title and contents of an LSM Information window varies depending on the command being used and
the IDF Language options and settings.

Minimized Windows Viewer
The MINIMIZE command "shrinks" a window, and so frees up space on the display screen. The first
MINIMIZE command opens the Minimized Windows Viewer below the Command window (command
line and PF Keys). An entry representing the minimized window is placed in the Minimized Windows
Viewer. You can select the window to be minimized with the cursor.

The MAXIMIZE command restores a minimized window to its previous position on the display screen.
When the last minimized window is maximized, the Minimized Windows Viewer closes. You can select
the window to be maximized with the cursor.

┌───┐
│ Var: BThing > This is the b-thing here < │
└───┘

Figure 13. LSM Information window, with VARIABLE command output. In this case, the variable attributes are hidden
due to the COMPACT ON (default) Language option.

┌01─Language Options──┐
│ Show: Both, Stmt │
│ Dcls: ON Comments: ON Macs: ON Generated: ON Nocode: OFF │
│ Space: OFF Brief: OFF Compact: OFF │
│ Char: EBCDIC Fixed: Decimal Float: Std Bit: Bit │
│ Enum: Decimal Packed: Decimal Zoned: Decimal │
│ VAR checking: Bounds: ON Negative: ON Substring: ON Optimize: ON │
│ Audit: OFF │
│ SAREGS: OFF SALIMIT: 100 │
│ Major: OFF PadID: OFF Detail: MIN,3 │
│ Nest: 0 Scroll: MAX │
│ Debug: OFF │
│ Stem: LSM. EXLIMIT: 20000 │
│ XPATH: ASMLANGX │
└───┘

Figure 14. LSM Information window, with LANGUAGE OPTIONS command output

74 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Options window
Open an Options window with the OPTIONS command. Close it by issuing the OPTIONS command
again, or by issuing the CLOSE command against that window.

The Options window has a fixed size. Use the PREVIOUS and NEXT commands or PF keys to scroll to
the next or previous page of settings, provided the cursor is in the Options window when the command
is issued or PF key pressed.

┌01─Current Registers───┐
│ (TCAT) @PROLOG+44 PSW 078D100080057722 (CC mask=4 L)│
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├02─Disassembly───┤
│ (TCAT) @PROLOG+32 │
│ 00057716 92C1 C0CA MVI CTGTYPE,193 │
│ 0005771A 943F C0BA NI CTGOPTN3,63 │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ 00057722 4190 07D8 LA R9,2008 │
│ 00057726 5090 C108 ST R9,CATWRK │
│ 0005772A 1F88 SLR R8,R8 │
│ 0005772C 5080 C10C ST R8,CATWRKUS │
│ 00057730 4190 C108 LA R9,CATWRK │
│ 00057734 5090 C0C4 ST R9,CTGWKA │
│ 00057738 4170 0002 LA R7,2 │
└───┘
==>

1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve

Figure 15. A sample screen before any windows are minimized

┌01─Current Registers──┐
│ (TCAT) @PROLOG+44 PSW 078D100080057722 (CC mask=4 L) │
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
└──┘

==>

1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve
MIN-> 02-Disasm

Figure 16. The same screen after the Disassembly window is minimized

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 75

Some IDF options settings cannot be modified after IDF has completed initialization. For these, the option
setting is shown in the same color as the option name.

Modify the remaining options by overtyping the current setting with an appropriate options keyword.

Old Registers window
Open the Old Registers window with the OREGS command. Close it by issuing the OREGS command
again or by issuing the CLOSE command against that window.

If your program has executed one or more instructions, by default, a copy of the PSW, next instruction,
and registers as of the last time IDF was in control are also shown (after this these are generally the
previous contents of the PSW, general registers, and so on). If the CREGS command or the AREGS
command was issued, the control registers or the access registers, as of the last time IDF was in control,
are displayed. If your program has not executed any instructions, this window is empty.

Skipped Subroutines window
Open the Skipped Subroutines window by issuing the SKIPSTEP command without providing any
arguments. Close the window, by issuing the SKIPSTEP command again without any arguments or issue
the CLOSE command against that window. When the Skipped Subroutines window is opened, it is
positioned at the top right corner of the screen, overlaying any existing information. It uses as many rows
as needed to display the information.

The window lists the subroutines for which single-stepping, statement stepping, or the PATH or
FASTPATH options are bypassed. If there are more skipped subroutines than fit on the screen, the NEXT
and PREVIOUS commands scroll forward and backward through the list.

The Skipped Subroutines window also lets you stop the "skipping" of a subroutine by placing the cursor
on the field describing the subroutine in question, and either pressing the ERASE-EOF key or overtyping
the field with blanks.

┌04─Debugger Options──More: + - ─┐
│ APROGMSG: ON ASCii: OFF AUTOLoad: ON AUTOSize: ON BCX: ON │
│ CKSubcm: OFF CMDLog: OFF CMPExit: OFF COMmand: OFF DMS0: OFF │
│ DSECts: ON EXItexec: OFF FASTPath: OFF FULLQual: OFF HEXDisp: ON │
│ HEXInput: ON IMPMacro: ON INVPsw: OFF MACROLog: OFF MODMap: ON │
└──┘

Figure 17. Options window

┌01─Old Registers──┐
│ (TCAT) @PROLOG+82 PSW 078D200080057748 (CC mask=2 H) │
│ 00057748 1836 LR R3,R6 │
│ R0 00009025 R1 000120D4 R2 00057FC0 R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 00000001 R7 00000002 FPR2 0000000000000000 │
│ R8 00000000 R9 000577E8 R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 000000000000000 │
└──┘

Figure 18. Old Registers window

┌01─Subroutines Skipped──┐
│ 00057712 (RXLLSTDD) XCOM │
│ 00057A88 (RXLLISTD) RXLLISTD │
└──┘

Figure 19. Skipped Subroutines window

76 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Target Status window
Open the Target Status window with the STATUS command. Close it by issuing the STATUS command
again or by issuing the CLOSE command against that window.

The Target Status window provides information about the programs known to IDF. This includes the
number of symbols in the program known to IDF, where the program was loaded in memory, how large
it is, and, for the original target, its entrypoint address. The name of the currently qualified module is
shown in the message color. The window shows the information about one module at a time. To display
information about the other modules known to IDF, place the cursor in the Target Status window and
issue a NEXT or PREVIOUS command.

z/OS For multi-segment program objects the window shows information about one segment at a time.
For example: PROGA with AMODE24 and AMODE31 classes bound with the SPLIT option will
have two entries, one for each segment, with the same Program name.

Some examples of actual screens
Different windows can be open at the same time in various combinations. The larger the screen the more
windows you can have open at one time. This example shows a combination of open windows. It
combines the Current Registers window, the Old Registers window, a Disassembly window and a Dump
window all on one screen. The example was created on a screen with 43 lines.

┌───┐
│ Program VARMVSXA Origin 00057920 Entrypoint 80057920 │
│ Symbols 66 End 00057FFF Size(hex) 000006E0 Size(dec) 1760 │
└───┘

Figure 20. Target Status window

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 77

If your screen display is like the one shown above, and you open the Break window, the Break window
overlays part of the screen as described above and shown in Figure 22 on page 79.

┌01─Current Registers──┐
│ (TCAT) @PROLOG+44 PSW 078D100080057722 (CC mask=4 L) │
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├02─Old Registers──┤
│ (TCAT) @PROLOG+40 PSW 078D10008005771E (CC mask= 4 L) │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├03─Disassembly──┤
│ (TCAT) @PROLOG+32 │
│ 00057716 92C1 C0CA MVI CTGTYPE,193 │
│ 0005771A 943F C0BA NI CTGOPTN3,63 │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ 00057722 4190 07D8 LA R9,2008 │
│ 00057726 5090 C108 ST R9,CATWRK │
│ 0005772A 1F88 SLR R8,R8 │
│ 0005772C 5080 C10C ST R8,CATWRKUS │
│ 00057730 4190 C108 LA R9,CATWRK │
│ 00057734 5090 C0C4 ST R9,CTGWKA │
│ 00057738 4170 0002 LA R7,2 │
├04─Storage Dump───┤
│ (TCAT) CTGOPTN3 │
│ 0005779A 21 . │
│ (TCAT) CTGOPTN4 │
│ 0005779B 00 . │
│ (TCAT) CTGENT │
│ 0005779C 000577BC │
│ (TCAT) CTGCAT │
│ 000577A0 00000000 │
│ (TCAT) CTGWKA │
│ 000577A4 00000000 │
│ (TCAT) CTGDSORG │
└──┘
==>

1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve

Figure 21. An example of several open windows on one screen

78 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Specifying a window
Many commands affect what is displayed in a particular window. There can be more than one
Disassembly window, Dump window, or LSM Information window, open at once. IDF needs to be told
which one is the target of commands like DISASM, DUMP, FOLLOW, LANGUAGE, SEARCH, and SET
ALET. Similarly, with the CLOSE, MOVE, NEXT, PREVIOUS, and SIZE commands IDF needs to be told
which window to use.

To tell IDF which window to use, you can use a Window Specification in the appropriate command. The
Window Specification is an equal sign followed by the window's window number, in the form "=n". The
Window Specification, if present, must precede any operands of the command. For example:

DISASM =2 address
FOLLOW =3 R9

You can also indicate the window IDF should use by placing the cursor in the window. As the cursor can
also specify the argument of a command, a Window Specification, if present, is used in preference to the
position of the cursor to specify the window to be used.

┌01─Current Registers────┬05─Break Points───────────────────────────────────────┐
│ (TCAT) @PROLOG+44 │ w00057752 (TCAT) @DL00029 │
│ R0 00009025 R1 0001 │ Condition: = c r3,=f’3’ │
│ R4 FEFE040F R5 FEFE │ 00057788 (TCAT) LOCRET │
│ R8 FEFE080F R9 0005 └──
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├02─Old Registers───┤
│ (TCAT) @PROLOG+40 PSW 078D10008005771E (CC mask= 4 L) │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ R0 00009025 R1 000120D4 R2 FEFE020F R3 FEFE030F FPR0 0000000000000000 │
│ R4 FEFE040F R5 FEFE050F R6 FEFE060F R7 FEFE070F FPR2 0000000000000000 │
│ R8 FEFE080F R9 000577BC R10 FEFE0A0F R11 FEFE0B0F FPR4 0000000000000000 │
│ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
├03─Disassembly───┤
│ (TCAT) @PROLOG+32 │
│ 00057716 92C1 C0CA MVI CTGTYPE,193 │
│ 0005771A 943F C0BA NI CTGOPTN3,63 │
│ 0005771E 9620 C0BA OI CTGOPTN3,32 │
│ 00057722 4190 07D8 LA R9,2008 │
│ 00057726 5090 C108 ST R9,CATWRK │
│ 0005772A 1F88 SLR R8,R8 │
│ 0005772C 5080 C10C ST R8,CATWRKUS │
│ 00057730 4190 C108 LA R9,CATWRK │
│ 00057734 5090 C0C4 ST R9,CTGWKA │
│ 00057738 4170 0002 LA R7,2 │
├04─Storage Dump──┤
│ (TCAT) CTGOPTN3 │
│ 0005779A 21 . │
│ (TCAT) CTGOPTN4 │
│ 0005779B 00 . │
│ (TCAT) CTGENT │
│ 0005779C 000577BC │
│ (TCAT) CTGCAT │
│ 000577A0 00000000 │
│ (TCAT) CTGWKA │
│ 000577A4 00000000 │
│ (TCAT) CTGDSORG │
└───┘
==>

1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve

Figure 22. An example of the Break window overlaying other windows

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 79

If you neither use a Window Specification nor place the cursor in a window of the appropriate type
(Disassembly window for DISASM command, and so on), then:
1. The DISASM and LANGUAGE commands use the first open Disassembly window.
2. The DUMP and FOLLOW commands use the first open Dump window.
3. The ARRAY, STRUCTURE, and VARIABLE commands use the first open LSM Information window.
4. The NEXT and PREVIOUS commands scroll all the open windows.
5. The SIZE and MOVE commands need the window type as an extra argument.
6. The SEARCH command starts searching from the start address of the first open Disassembly window

or Dump window.

PF keys
The default PF key settings provide the functions anticipated to be most useful.

As distributed on CMS and TSO, the ENTER key is set to the COMMAND command. This means that
you can invoke any IDF command by typing it on the command line and pressing ENTER, instead of
invoking it by pressing a PF key.

You can redefine the PF keys by issuing a SET command on the command line, by issuing SET
commands in your PROFILE (the usual method), or by writing a macro to reset them (occasionally
useful). The SET PFK command is described in “PFK” on page 160.

The ENTER key and PF1 through PF24 can be set to any IDF command or to any IDF macro.

By default, PF13 through PF24 are undefined and undisplayed. To display use “PFKDISP” on page 160.
Any of those keys that remain undefined are mapped into PF1 through PF12. This makes it easier to use
some terminals.

Command record and playback features
IDF provides a command level record and playback facility. IDF records commands to a command log.
These commands can then be replayed. They can all be replayed at the start of a debugging session, or
else they can be recalled one by one, and then executed, modified and executed, or skipped.

To record a debugging session on the command level, specify or set the CMDLOG option.

The location of the command log is:
v On CMS, the file "ASM CMDLOG fm", where fm is specified by the MODE option (and defaults to file

mode A1).
v On z/OS the data set defined by the CMDLOG DD name.
v On z/VSE, the data set defined by the CMDLOGO DLBL name.

Turn logging off with the SET OPTION CMDLOG command.

You can specify command arguments with the cursor position, and you can overtype data on the screen.
IDF logs all operations in a way that lets you repeat them later with some modification to the file.

To play back all or part of a session recorded at command level, use the RLOG command, or specify the
RLOG option at invocation.

Address expressions
You can specify the addresses you provide to IDF either by the cursor placement (for information about
this see “Arguments and cursor positioning” on page 83) or by typing an expression on the command
line before pressing a PF key.

80 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

An IDF expression is made up of terms. If an expression consists of two or more terms, a plus (+) or
minus (-) sign (operator) indicates that the fully resolved values of the terms should be added or
subtracted.

A term can consist of a program symbol, a statement number, a hex constant, a decimal constant, or a
character constant that is one character in length. Program symbols are of the form "(module.csect)
symbol". If supported by the LSM, they may also be of the form "(module.csect) STMT#nnnnn". The
following are examples of basic terms:

LOOP
STMT#5
X’2005E’
C’b’
247
F’235’

Source statement numbers can be used as symbolic names. They are specified in the form "STMT#nnnnn",
where nnnnn is the statement number involved.

Numeric values that are input without an explicit hexadecimal (X'999') or decimal (F'999') indication, for
example "246", are interpreted by IDF as determined by the current base setting. The default base is
decimal. It can be redefined to hexadecimal with HEXINPUT ON or SET OPTION ON HEXINPUT. (The
arrow beside the command line indicates the default base; an arrow of the form "-->" is used if the
default base is decimal, and of the form "==>" is used if the default base is hex.)

Implicitly specified hexadecimal numbers must begin with a numeric digit from 0 to 9. If you attempt to
input a hexadecimal number such as A34 implicitly, IDF interprets it as the name of a symbol, not a
number. Thus, 0A34 is recognized (assuming the default base is hexadecimal) but A34 is taken as a
symbol name.

In some cases you may wish to specify a CSECT name or a module name. For example, if symbol LOOP
occurs in two assemblies, you have to specify the CSECT name of the symbol you are referring to. If the
symbol is not in the currently QUALIFIED module, you have to specify the module of the symbol you
are referring to. Specify the module name and the CSECT name by prefixing the term with them, and
enclosing them in parentheses. The module name, when present, precedes the CSECT name and is
followed by a period. When a module name is specified, a CSECT name need not be specified. Here are
some examples:

(TEST)LOOP
(VARMVSXA.VARASM) BTHING
(TCAT.) LOCRET

Intersperse blanks as you like, provided they do not interrupt items such as a symbol or hex constant.
For example, the following expressions are equivalent to the previous ones:

(TEST) LOOP
(VARMVSXA . VARASM) BTHING
(TCAT .) LOCRET

The SET QUALIFY command tells IDF which module's symbols should be searched when a module
name is not specified in a symbolic name.

In some cases you may wish to follow a term with a register designator. A register designator consists of
the strings 'PSW', 'R0' through 'R15', or 'AR0' through 'AR15', enclosed in parentheses. If 'AR0' through
'AR15' are specified then those commands that can use an ALET use the ALET contained in that access
register in addition to the contents of the associated general purpose register. For example, location LOOP
in CSECT TEST indexed by the current contents of R4 is specified:

(TEST)LOOP(R4)

The byte at the location addressed by R4 in the dataspace identified by the ALET in AR4 is specified:

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 81

0(AR4)

You can combine terms, for example:
(TEST) LOOP+20 (R2)

24(R2)+0(R3)

As another example, to find the difference between two labels in the same CSECT, LOOP, and
LOOPEND, you could use:

(TEST)LOOPEND-(TEST)LOOP

If you have a translate table, you might want to use an expression with a character term:
TRTABLE+C’t’

Character terms in addressing expressions are restricted to a single character. If you need to specify an
apostrophe, place two apostrophes within the enclosing apostrophes: for example C''''.

Terms and register designators can be followed by indirection operators (%, :>, &, +>, ?, =>, ->). If an
indirection operator follows a term, IDF uses the contents of the word pointed to by the expression
evaluated thus far. Similarly, if an indirection operator follows a register designator, IDF is being told
how to interpret the contents of the register. The word or register is treated as:
v A 24-bit address if the % or :> operators are used.
v A 31-bit address if the ? or => operators are used.
v A 64-bit address if the & or +> operators are used.
v The appropriate size (31-bit or 24-bit or 64-bit) depending on the AMODE of the PSW if the ->

operator was used.

Note: If a register designator is not followed by an indirection operator it is interpreted as a 24-bit, 31-bit
or 64-bit value depending on the AMODE of the PSW.

You can refer to the current offset value (set with the OFFSET command) by starting an expression with a
unary plus or minus. If the expression begins with a unary plus, it is interpreted as the current OFFSET
value plus the remainder of the expression. If the expression begins with a unary minus, it is interpreted
as the current OFFSET value minus the remainder of the expression. Examples of an expression of this
type are:
+X’40’
-23

If the current offset value is X'20000', the expression +X'40' gives the value X'20040'.

Addresses displayed by IDF
In many situations IDF displays, or returns, addresses in symbolic form. Normally, these "symbolic
addresses" are of the form "(module.csect) symbol+offset". If the address is within a code section for
which IDF Language extract data was loaded, the symbolic address is of the form:
"(module.csect) STMT#nnnnn+offset".

If the address is within the limits of the currently qualified module, the module name and the separating
period are normally left out. The FULLQUAL option forces IDF to always include the module name in
generated symbolic names.

Source statement numbers can be used as symbolic names. They are specified in the form "STMT#nnnnn",
where nnnnn is the statement number involved. nnnnn can be any value between 1 and 65535 inclusive.

82 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Arguments and cursor positioning
A number of IDF commands accept arguments. For example, the BREAK command accepts an argument,
which is the address at which a breakpoint is to be set. This section describes the method used by IDF to
determine what argument was provided.

IDF uses "intelligent" cursor sensing logic to let you specify a "verb" by pressing a PF key, and specify the
argument by either typing an expression, or "pointing" with the cursor. Instead of typing an expression
and a command, you can place the cursor on a display field, then press a PF key. This tells IDF to
perform the requested task at the current cursor location.

The following examples show how this works in practice:
v When a register contains the address of an area you want to dump or disassemble, place the cursor in

the register and press the DUMP or DISASM PF key.
v If a Disassembly window is open, you can place the cursor in the first input field where the

instruction's hexadecimal value is shown, and press the BREAK key to set a breakpoint on that
instruction.

v If you have dumped a control block that contains a "link" word, place the cursor in the link word and
press the DUMP key. This makes the link word the first one shown. If you press DUMP again, IDF
"follows" the link and displays the next control block.

z/VM

v If you have dumped a storage area that is being altered unintentionally, you can place the
cursor in the Dump window and issue the ADSTOPS command to set the start of an address
modification range, then move the cursor to the end of the area and issue the ADSTOPS
command again to set the end of the range shown.

If you find the rules described here difficult to remember, experiment with IDF to see if you can get the
"feel" of it. If not, you can always specify arguments by typing them on the command line.

Here is how IDF determines the argument:
1. If the command does not accept an argument, no argument is sought.
2. If an expression is entered on the command line, that expression is evaluated as the supplied

argument.
3. If the cursor is on the command line, but no expression is entered there, IDF considers that no

argument is supplied.
4. If the cursor is in an unprotected field that is not the command line, IDF attempts to use that cursor

position as an indication of the argument that the operator needs, as follows:
a. If the cursor is in a floating-point register, or any field shown on the Break window, IDF considers

that no argument is supplied.
b. If the cursor is in a general-purpose register, IDF considers the low-order 24 bits, or the low-order

31 bits if in AMODE31, or 64-bits if in AMODE64, of the contents of that register is the supplied
argument. If the access registers are displayed, then the DUMP and OPEN DUMP commands use
the ALET contained in the access register in addition to the address contained in the associated
general-purpose register. This applies to the registers displayed in both the Current Registers
window and the Old Registers window.

c. If the cursor is in the PSW, IDF considers the address part of the PSW is the supplied argument.
This applies to the PSW displayed in both the Current Registers window and the Old Registers
window.

d. If the cursor is in a disassembled instruction, the following rules apply:
1) All commands except DISASM and OPEN DISASM use the address of the halfword the cursor

is in.

Chapter 8. Windows, PF keys, cursor positioning, and other operational details 83

2) The DISASM and OPEN DISASM commands use the address of the halfword the cursor is in,
unless the field the cursor is in is both the first field disassembled and a branch instruction,
when the commands use the effective address of the branch instruction.

e. If the cursor is in the protected portion of a disassemble line, the starting address of the
instruction disassembled is used.

f. If the cursor is in a dump field, the following rules apply:
1) All commands except DUMP and OPEN DUMP use the address of the beginning of the

hexadecimal field the cursor is in, or the exact address of the character the cursor is on if it is
in the character portion of the display.

2) The DUMP and OPEN DUMP commands use the address of the beginning of the hexadecimal
field the cursor is in, unless the field is both a fullword field and the first field in the dump
display, in which case the commands use the low-order 24 bits, the low-order 31 bits if in
AMODE31, or the first two words if in AMODE64, of the contents of the field.

g. If the cursor is in the protected portion of a dump line, the starting address of the dump line is
used.

84 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 9. Source-level debug additional capabilities

IDF provides a significant debug capability for application programs at the disassembly (object code)
level without any more preparation. For trivial debug situations, this is often enough.

Programmers write programs at the source level. It follows that when the reason for a problem is not
immediately visible, it is advantageous to also debug at the source level. The addition of the
ASMLANGX step to the program development process means that IDF Language extract data is available
for the program compile units. When this data is loaded using the IDF LOAD LANGUAGE or STEP or
STMTSTEP commands, you can perform these extra functions:
v

– Selectively enable and disable the display of variable declaration statements with SHOW DCLS and
HIDE DCLS commands.

– Selectively enable and disable the display of block comments with SHOW COMMENTS and HIDE
COMMENTS commands.

– Selectively enable and disable the display of macro definitions and macro expansions with SHOW
MACROS and HIDE MACROS commands.

v Perform source text searches
– You can find and display the desired area of the source code.
– The search can be up or down.
– Both LOCATE (like the XEDIT Locate command) and FIND (like the ISPF Editor Find command)

commands are supported.
v Set breakpoints on program statements

– The breakpoint can be at the start of, or within, any program statement.
v Single-step your program

– You can use the STMTSTEP command to single-step at the program statement level.
– You can use the STEP command to single-step at the program instruction level.

v Program variable data display (with optional typeover alteration)
– Supported for any program variable that is "known" in the currently executing program block.
– There are many types of variables. These are displayed with different IDF Language Support

commands:
- To display simple variables, the VARIABLE command is used.
- To display structures and their components, the STRUCTURE command is used.
- To display array elements, the ARRAY command is used.
- To display variables type attributes, the TYPE command is used.
- To display the names of variables for which a pointer (or locator) variable is a valid base address,

the PLOCATES command is used.
For more details, see “Displaying and changing items” on page 86.

– The various forms of program variable display support complex expressions. See “Variable
expressions” on page 87 for more details.

v Program variable name display
– The names of the program variables matching a particular pattern can be displayed.
– The names of all program variables can be displayed.
See “Displaying variable names” on page 90 for more details.

v Program caller hierarchy display
– For each generation:

© Copyright IBM Corp. 1992, 2015 85

- For those programs for which IDF Language information is available, the program module, code
section, source statement number, and source statement number are shown

- For those programs without IDF Language information, the program module, code section, and
offset from the start of this code section are shown.

See “Displaying CALLERS” on page 90 for more details.

Controlling single-stepping your program
If STOPSTMT OFF is in effect, the ASMLANGX data is not automatically loaded while the STMTSTEP
process is in control. If STOPSTMT OFF is in effect when STMTSTEP is at a code location for which no
extract data is loaded, then language extract AUTOLOAD is not performed. At the start of the session
with no LANGUAGE LOAD done, when the STMTSTEP is issued - it will load the extract data for the
current CSECT and then go into STMTSTEP process mode. Once in this process no further loads will
occur. This allows for all CSECTS to have language extract data available at all times. When running a
debug session in which only particular CSECTs are to be examined by STMTSTEPping, then set
STOPSTMT OFF and LANGUAGE LOAD the CSECTs required prior to starting - there is no need to
manipulate the members available in the ASMLANGX data set.

With STOPSTMT OFF, a STMTSTEP on a call to another CSECT will still perform single-stepping on each
instruction in the called routine (without updating the display) until an instruction for which language
extract data was loaded is encountered. This may involve many thousands of instructions before such an
instruction is encountered, and may give the appearance that the program is in a loop because the
display is locked during this process.

If the STEP command is issued by a macro, it does not take effect until the macro exits. The MSTEP
command can be used to execute target instructions before returning control to the invoking macro.

If you have subroutines within the program which you do not want to step through, use the SKIPSTEP
command. The SKIPSTEP command causes IDF to skip stepping when it comes to a subroutine call to a
subroutine that was added to the list of subroutines being skipped. For the purposes of stepping, the
skipped subroutine is treated as one instruction, the subroutine call instruction itself. If a breakpoint or a
watchpoint whose condition is true is placed within the execution path of the subroutine being skipped,
execution stops at that breakpoint or watchpoint.

Displaying and changing items
Items are displayed using these commands:

Table 1. Commands Displaying items

Item Command

variables VARIABLE
structures STRUCTURE
array elements ARRAY
type attributes for a variable TYPE
pointer locates information for a variable PLOCATES

The VARIABLE command lets you look at successive elements of an array. However, the need to
manually update the array indices to view the desired array element becomes tiresome.

If the array is a structure component, use the STRUCTURE command to scroll through all elements of the
array.

86 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If the array is actually a substructure with multiple components you must spend the time to scroll past
the components which are not relevant to the problem at hand. The ARRAY command helps in these
situations.

When you use the ARRAY command, you select the initial element to be displayed using the same syntax
as the VARIABLE command. The significant differences are:
v When the LSM Information window is scrolled forwards past the end of the current variable

information display, the next element in the array is displayed.
v When the LSM Information window is scrolled backwards past the beginning of the current variable

information display, the previous element in the array is displayed.

The display of the information about items persists until you:
v Issue the same command, but without item arguments.
v Issue a CLOSE command against the window.
v Update the information in the window, with a command such as VARIABLE, ARRAY, CALLERS,

EVALUATES, PLOCATES, LANGUAGE STATUS or MAP.
v The target program completes execution.
v The target program execution progresses beyond the item's defined scope.

You can change the data displayed by a VARIABLE, STRUCTURE, UNION or ARRAY command by
overtyping it.

Variable expressions
Variable expressions are supported for those programs for which the program that generates the
extraction file (ASMLANGX) has made variable information available. Variables are displayed in
PL/I-like format, with appropriate extensions where needed.

Variable expressions cannot be substituted for Address expressions in commands that expect an address
to be supplied. For example, 'BREAK variable-expression' does not evaluate the variable-expression as an
address. However, an IDF macro can be written that uses EXTRACT VLOC to determine the address of a
variable which is then used as an operand on any IDF command:
/* REXX Variable Breakpoint */
/* Supply the variable name to be set breakpoint at */
ARG vbn

IF vbn ¬= ’’ THEN DO
’EXTRACT VLOC ’ vbn
IF LSM.0 = 1 THEN DO

PARSE VAR LSM.1 . varaddr .
’BREAK ’varaddr

END
END

Variable scope
The source statement which corresponds to the current instruction address in the PSW is used to
determine the current program scope.

Only variables that are active within the current program scope can be accessed.

Variable names
Variable names are 1 to 255 characters.

Assembler variable names are translated to upper case as part of command processing.

Chapter 9. Source-level debug additional capabilities 87

Simple variables
Simple variables are defined by name only.

Aggregate variables
Structures are examples of aggregate variables, where a number of variables are associated together in a
hierarchical manner.

The major component is the term which is used to define the variable which "owns" the aggregate. The
variables within the aggregate are variously known as components, fields, and members depending on
the source language.

Dot qualification
A simple variable can have the same name as a variable which is within a structure. In this case, dot
qualification is used to distinguish the variables.
Dcl

minor Char(1), /* Simple variable */

1 major Char(3), /* Structure */
2 minor Char(1),
2 minor2 Char(1),
2 minor3 Char(1);

var minor <- "MINOR" is an ambiguous name
var .minor <- displays simple variable "MINOR"
var .major <- displays structure major component "MAJOR"
var major.minor <- displays structure component "MINOR"

When a structure is more than 2 levels deep, IDF lets you omit any of the leading names, as long as the
name is not ambiguous. If multiple variables within the same structure have the same name, and dot
qualification levels are skipped, IDF selects the component which is reached in the fewest number of
skipped levels.

Based variables
You can specify based variables by name only, in which case the implicit variable basing is used if
available. This is:
v The variable basing which was defined when the variable was declared. For some variables, such as

parameters, this information is determined during the extraction process (by ASMLANGX).
v The variable basing as redefined by an active assembler USING statement.

Alternatively, you can specify an explicit locating expression, making use of the -> locator operator.

There are limitations in the processing of some Assembler USING statements by ASMLANGX, which in
turn limits ASMIDF. These USING statements are:
v Dependent USINGs (labeled and unlabeled).
v USINGs coded with an end value.
v USINGs that do not cover the start of an area:

USING MYAREA+4096,R8 - There is no USING MYAREA,R7

Array indexing
Information regarding the upper and lower bounds of each array dimension are defined within the IDF
Language extract file.

Array indexes are specified from most-significant to least-significant in a left to right direction. Array
elements are mapped within the array in row major order.

88 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If too many array indexes are specified, a warning message is issued and the extra indexes are ignored.

If insufficient array indexes are specified, a warning message is issued and the remaining indexes are set
to the low bound of the corresponding array dimension.

The indexing expression can be:
v PL/I-like-style, where the index values are enclosed within parentheses
v C-style, where the index values are enclosed within either square brackets ("[" and "]"), or the

equivalent trigraphs ("??(" and "??)")

The style used is only significant if a substring specification follows the array index specification.

Variables and built-in function results can specify array index specifications.

Array index values must normally be within the bounds defined by the variable declaration. Suppress
this check with the CHECK BOUNDS OFF command.

Substrings
For Character String and Bit String variables, you can specify that only a portion of the string (from here
on known as a “substring”) is processed by a command.

There are three basic forms of substring specifications:
1. single element

v varname(element-index)
2. from-to notation

v varname(from-element-index:to-element-index)
3. length notation

v varname(from-element-index::element count)

The definition of the first element of a string varies from language to language. IDF lets you specify the
format to be used:
PL/I-like-style

v array index or substring expression is enclosed within parentheses
v first element in the string is element 1

C-style
v array index or substring expression is enclosed within either square brackets ("[" and "]"), or

the equivalent trigraphs ("??(" and "??)")
v first element in the string is element 0

Variables and built-in function results can be used to specify substring specifications.

Substring expressions follow any array index specifications, with a delimiting comma.

Substring ranges must normally be within the limits defined by the variable declaration. Suppress this
check with the CHECK SUBSTRING OFF command.

Examples
var stuff
str addr(x’20000’)->struct
var addr(12(R2))->ptr->stuff(2)
var ptr->ptr2->stuff
var ptr(3)->ptr->stuff
arr stuff(-5)
arr stuff(1:10)
arr stuff(1::25)
var var1;var2

Chapter 9. Source-level debug additional capabilities 89

var var1 ;ptr->stuff
var stuff(1:10) ; stuff(30:40)
var chrarray(15,1:10);chrarray(15,1::10)
var chrarray[15,0:9];chrarray[15,0::10]

Displaying variable names
The NAMES command provides a list of the variables that are eligible for display. This list is potentially
quite large, so you can provide name patterns. Each name pattern acts as a filter; only names that match
at least one name pattern are displayed.

For more information about NAMES, see “NAMES” on page 154.

Displaying CALLERS
Calling hierarchy information display is supported for all programs which use the standard OS/VS
"Type-1" convention for Save Area area register usage and chaining.

For more information about displaying the calling hierarchy information for one or more generations in
the program caller hierarchy, see “CALLERS” on page 103.

Source level support
If you need source level support for any dynamically loaded programs then you need to get IDF to load
the required ASMLANGX files. There are two ways to do this:
v Use the STMTSTEP command (see “STMTSTEP” on page 186). For this to work correctly, the CSECT

name must match the file name of the extract file. So if you are in a section named CODE then the
extract file name also has to be CODE for the automatic load to complete successfully.

v Use the LANGUAGE LOAD command (see “LANGUAGE LOAD” on page 129). This command lets
you preload the extract files before execution of these sections. It also lets you load extract files where
the name of the extract file does not match the section name. This might be useful when you are
debugging a module with multiple code sections, but you only have one extract file.

The QUALIFY command (see “QUALIFY” on page 165) lets you change the default module name. This is
useful with dynamically loaded programs to simplify the commands.

For example, assume that the initial program is ARROW, and IDF has loaded another program called
TARGET. The default module name starts off as ARROW and a command like DISASM SECTA searches
ARROW for the section names SECTA.

If there is also a section named SECTA in TARGET, to display this section, you have to enter the
command DISASM TARGET.SECTA.

If you issue QUAL TARGET first to change the default section name, then DISASM SECTA searches module
TARGET.

The qualified name is used whenever a module name is omitted from a command, and the displays
remove the qualified name from the window title. Using the previous example, and with QUAL TARGET
issued, then the DISASM window from DISASM SECTA shows (SECTA), and if there is another window
displaying SECTA from the module ARROW, then the title in that window shows (ARROW.SECTA).

90 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 10. Commands and operating procedures

This chapter describes each IDF command, except for EXTRACT, which is used only in macros. The
EXTRACT command is described in Chapter 15, “The EXTRACT command,” on page 223.

IDF commands perform the same functions regardless of whether they are invoked through a PF key, the
command line (when a PF key set to COMMAND is pressed), or a macro.

If you have not read “Arguments and cursor positioning” on page 83, please do so before you continue.
Many of the following command descriptions assume you understand how IDF obtains an address from
the cursor position.

The documentation of each command describes a way in which the command will work. The IDF
command processor is powerful and flexible, and it is possible that there are alternative undocumented
variations to these commands that will also work.

IDF commands cross-reference

Breakpoint Commands Page

ADSTOP 94

ADSTOPS 95

BREAK 100

DBREAK 109

REGSTOPS 169

SET ADSTOP 174

SET BREAK 175

SET REGSTOP 180

TRIGGER LOAD 192

UNTIL 194

WATCH 197

Program Information Commands

BASE 99

CHECK 105

EPOFFSET 115

LOAD 138

LOCATION 140

MODULE 144

MODULE (type) 144

MODULE BASE 145

MODULE SIZE 146

PROGCHK 163

PROGCK 163

PSWSTEAL 164

Breakpoint Commands Page

QUALIFY 165

SELFNUCX 173

SET SIZE 180

STOKEY 187

STOREMAP 187

VERSION 196

XEDEXIT 199

Program Running Commands

GOTO 122

MACRO 141

MRUN 149

MSTEP 153

PAUSE 159

PER 160

PSW 163

RUN 171

RUNEXIT 171

SET PSW 179

SKIPSTEP 184

STEP 185

STMTSTEP 186

SUBSET 189

SVC 189

SYMBOL 190

© Copyright IBM Corp. 1992, 2015 91

Breakpoint Commands Page

TASKS 191

VALUE 194

WHERE 199

Program Exit Commands

ABEND 94

QQUIT 166

QUIT 167

RCQUIT 167

Register Modification Commands

FPC 121

FPR 121

GPR 122

GPRG 123

GPRH 123

R0-R15 171

Meta Control Commands

APROGMSG 96

AUDIT 98

DROP GLOBAL 112

DROP MODULE 112

DROP SYMBOLS 113

EXITEXEC 115

GLOBALS 121

GPACK 122

GSTATUS 123

HISTORY 125

ICOUNT 125

KWDSYN 126

LIBE 137

MODE 144

MPACK 149

MSTATUS 152

PRESERVE 162

RESTORE 169

REGS64 168

SALIMIT 172

SAREGS 172

SAVE 172

SET EXITEXEC 176

SET GLOBAL STEM 176

SET GLOBAL TEXT 177

Breakpoint Commands Page

SET ICOUNT 177

SET OPTION 178

Terminal Control Commands

ALARM 95

COLORS 106

COMMAND 107

CURSOR 108

LASTMSG 136

MSG 150

MSGID 151

MSGMODE 151

PFK 160

PFKDISP 160

QUIET 166

QUIETLY 166

REFRESH 168

RETRIEVE 169

SET COMMAND 175

SWAP 190

Window Open and Close Commands

AFPR 95

CALLERS 103

CLOSE 106

DISASM 111

DUMP 113

EPNAMES 114

LANGUAGE + 126

MAP 142

OPEN 156

OPTIONS 157

OREGS 158

PARMS 159

REGS 168

STATUS 185

Window Manipulation Commands

BACK 98

DOWN 112

DUMPMODE 114

FIND 116

FOLLOW 119

LEFT 136

92 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Breakpoint Commands Page

LOCATE 140

MAXIMIZE 143

MINIMIZE 143

MOVE 147

NEXT 155

OFFSET 155

ORDER 158

PLOCATES 161

PREVIOUS 162

RIGHT 169

SEARCH 173

SET OFFSET 177

SIZE 182

TITLE 191

UP 194

Source Level Set and Query Commands

BINARY 99

BIT 99

BRIEF 102

CHARACTER 104

COMPACT 107

DETAIL 111

EXLIMIT 116

FIXED 118

FLOAT 118

FMT 119

FORMAT 120

LANGUAGE COLOR 127

LANGUAGE
COMMENTS

128

LANGUAGE DECLARES 128

LANGUAGE MACROS 132

LANGUAGE OPTIONS 132

LANGUAGE STATUS 133

LANGUAGE STEM 134

Breakpoint Commands Page

LANGUAGE VERSION 134

LANGUAGE XPATH 134

PACKED 158

SPACE 184

VSEP 197

ZONED 200

Source Level Display Commands

ARRAY 97

BOTTOM 100

FIRST 117

HIDE 124

LANGUAGE DEBUG 128

LANGUAGE DROP 129

LANGUAGE LOAD 129

LANGUAGE SCROLL 133

LAST 135

MAJOR 142

NAMES 154

SHOW 181

STRUCTURE 188

TOP 192

TYPE 193

UNION 193

VARIABLE 195

Logging Commands

RLOG 170

VCHANGE 196

VS 196

Access and Control Register Commands

ALET 96

AREGS 96

CREGS 108

LOCATION ALET 141

SET AREG 174

Chapter 10. Commands and operating procedures 93

ABEND (CMS and z/OS)
Performs the usual IDF cleanup, then issues an OS ABEND. Use this command only for the intentional
triggering of a working ABEND intercept routine.

�� ABEND
abend-code

��

abend-code
A valid IDF expression denoting the ABEND code.

If no argument is supplied, the command line is checked for an expression and if a valid expression
is found its value is used as the ABEND code. If no argument is provided and the command line is
empty, the current contents of the target program's R15 are used as the ABEND code.

ADSTOP (CMS only)
Sets one end of a Storage Alteration Stop (ADSTOP) range.

�� ADSTop
expression

��

expression
The storage location. If not supplied, the address is determined from the cursor position, if possible.

If no expression is provided on the command line, and it is not possible to determine an address from
the cursor position (for example when the cursor is on the command line and the command line is
empty), this command is processed as an ADSTOPS command (see “ADSTOPS (CMS only)” on page 95).

All locations between (and including) the start address of the range and the end address of the range are
monitored for storage alteration. Up to four separate storage areas can be monitored simultaneously. You
are notified when a monitored location is modified.

Since the ADSTOP command sets one end of a range, you must issue it twice to define the range.

Storage locations can only be monitored for alteration when PER is enabled. Entering the ADSTOP
command when PER is disabled produces an error message.

Because of the way the PER hardware works, IDF partially disassembles any instruction that changes
PER storage, to determine the storage address modified. From this it determines whether the storage
address falls in one of the defined ranges. The partial disassembly is valid for most of the common
instructions. Some instructions do not resolve to the correct address. If you miss storage modification
stops, you may need to set the 1ADSTOP option (see “SET OPTION” on page 178). This option treats the
four ranges you have specified as a single storage area, from the lowest address in all of the ranges to the
highest. When the 1ADSTOP option is set, partial disassembly is not needed to determine the address of
modified data.

See also “SET ADSTOP (CMS only)” on page 174.

Return codes

94 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

0 Operation successful
5 Syntax or other error in expression
6 PER is disabled, or an ADSTOP is already set at that location

ADSTOPS (CMS only)
Toggles the display of the AdStops window.

�� ADSTops
REGSTops

��

The AdStops window is opened if it is not already open. If the AdStops window is already open, it is
closed.

See also “ADSTOP (CMS only)” on page 94, “SET ADSTOP (CMS only)” on page 174, and “SET
REGSTOP (CMS only)” on page 180.

Return codes
0 Operation successful
6 PER is disabled

AFPR
Toggles the display of the Additional Floating-Point Registers window.

�� AFPR ��

The Additional Floating-Point Registers window is opened if it is not already open. If the Additional
Floating-Point Registers window is already open, it is closed.

Return codes
0 Operation successful

ALARM
Controls the terminal alarm.

�� ALARM
ON

OFF
��

ON Ring the terminal alarm.

OFF
Reset the terminal alarm.

Chapter 10. Commands and operating procedures 95

Examples
SET ALARM
SET ALARM ON
SET ALARM OFF

ALET
Specifies the ALET used to qualify the dataspace to be displayed in a Dump window.

�� ALEt
window

expression ��

window
The window whose ALET is to be set. Select by a Window Specification or by placing the cursor in
the window. If omitted and the cursor is not in a Dump window, sets the ALET for the first Dump
window.

expression
If an access register is used in the expression, the ALET in the referenced access register is used
instead of the value of the expression.

You must be in an ESA environment for this command to work.

Examples
SET ALET =3 X’00010003’
SET ALET =2 0(AR4)

APROGMSG (CMS only)
Enables and disables the trapping of asynchronous program-checks that happen while IDF displays the
user interface.

�� APROGMSG ON
OFF

��

ON Enable trapping of asynchronous program-checks.

OFF
Disable trapping of asynchronous program-checks.

AREGS
Rotates the register display between the General Purpose and the Access Registers. Valid only in an ESA
environment.

�� AREGs ��

96 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

When issued, opens the Current Registers window if it is not already open.

Return codes
0 Register display was toggled
7 Not valid in this environment.

ARRAY
Displays the contents of one or more variables which are array elements.

�� ARRay
window

�

;

element

��

window
The LSM Information window used to display the array element contents information. Select it by a
Window Specification, or by placing the cursor in the window.

If supplied, the window must be an LSM Information window. If omitted, the first LSM Information
window is used. If no LSM Information window is open, one is opened.

element
A variable name.

Simple variables are defined by name only. You can define based variables by name only, in which
case the declared basing is used by IDF, or you can specify an explicit locating expression.

See “Variable expressions” on page 87 for a complete description of the syntax of the expressions
which may be used for ARRAY variable name arguments.

The array element display persists until:
v An ARRAY command without arguments is issued
v The window is closed with a CLOSE command.
v Another IDF Language command such as VARIABLE, STRUCTURE, TYPE, CALLERS, PLOCATES,

LANGUAGE STATUS, or MAP is issued, which directs IDF to update the LSM Information window
with new information

v The target program completes execution
v Target program execution progresses beyond the variable's defined scope

If the contents of the array element change while the program is running to a breakpoint, the changed
data is shown on the screen when the breakpoint is reached.

You can change the displayed data by overtyping it.

In EBCDIC display mode, character data equal to X'FF' or below X'40' is displayed as a period character.

In ASCII display mode, character data which does not correspond to a displayable EBCDIC character is
displayed as a period character.

If a based variable was respecified, the current active USINGs will be used to locate the variable.

Chapter 10. Commands and operating procedures 97

The display of the contents of the variables may be incorrect if the PSW indicates that execution is in the
middle of a statement. This is because the variable may be in a transitional state, not having yet achieved
its new value. Variable contents are only certain at the start and end of a statement.

Examples
array stuff(15)
array addr(x’20000’)->stuff(20)
array addr(12(r2))->ptr->stuff(2)
array ptr->ptr2->stuff
array ptr(3)->ptr->stuff
array array1(10);array2(-5)
array chrarray(15,1:10);chrarray(15,1::10)
array chrarray[15,0:9];chrarray[15,0::10]

AUDIT
Enables and disables display of variable basing audit information.

�� AUDit ON
OFF

��

ON Enables the display of variable basing audit information.

OFF
Disables the display of variable basing audit information. This is the initial setting.

When a based variable is displayed, IDF can optionally provide an audit trail to show you the
intermediate results of the variable location calculation.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

BACK
Makes a Dump window display the storage it displayed on the previous DUMP command for that
window.

�� BACK
window

��

window
A Dump window. Select by a Window Specification or by placing the cursor in the window. If a
Window Specification is not present and the cursor is not in a Dump window, uses the first Dump
window.

IDF maintains the addresses used on the last ten DUMP commands for each open Dump window in a
circular buffer.

98 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Return codes
0 Operation successful
6 No Dump windows are open at this time.

BASE
Specifies the base address of the target program specified when IDF was invoked.

�� BASe expression ��

expression
An expression that resolves to an address value.

Use the MODULE BASE command (see “MODULE BASE” on page 145) to set the base address of other
programs defined to IDF.

May be used when debugging a self-loading nucleus extension to follow the code to its new location.

Examples
SET BASE X’21000’

BINARY
The BINARY command is a synonym of the FIXED command. For details see “FIXED” on page 118.

BIT
Sets or queries the format used to display the data for bit variables.

�� BIT
BIT

*
HEX

��

BIT
Bit variables are displayed as a string of 0 and 1 characters.

* Bit variables are displayed in the default format (BIT).

HEX
Bit variables are displayed in hexadecimal. This mode is especially useful for displaying long bit
strings.

If the length of the bit string is not a multiple of 4 bits, the last hexadecimal character represents less
than 4 bits. Since bit strings are left-aligned, the extraneous trailing bits are ignored if you overtype
this nibble with a new value with 1 bits in any of these positions. A warning message is shown, and
the new digit is displayed with the corrected hexadecimal value.

If the display format is not specified, a message shows the current display format for bit variables.

Return codes

Chapter 10. Commands and operating procedures 99

0 Operation successful
2 Keyword truncated
5 Not valid bit variable display format

BOTTOM
Displays source code starting at the highest available address within the current code section.

�� BOTtom
window

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window.

If omitted, and the cursor is not in a Disassembly window, uses the first Disassembly window.

Return codes
0 Operation successful
6 No code section definition corresponds to the current address.

BREAK
Sets an instruction breakpoint, or toggles the Break window display.

�� BREak
address

� | command

��

address
An address. If an expression, the expression is used to provide the address.

If omitted, the address is determined from the cursor position. If it is not possible to determine an
address from the cursor position (for example when the cursor is on the command line and the
command line is empty), the Break window is opened if it is not already open, or closed if it is open.

command
A command to be executed immediately after the breakpoint is taken.

To set a deferred or sticky breakpoint, use the DBREAK command. See “DBREAK” on page 109 for
details.

If an address is supplied, either as an expression on the command line or by means of cursor position, a
breakpoint is set at that address. If a breakpoint or a watchpoint is already set at the specified address, it
is cleared. The BREAK command is a toggle that turns a breakpoint on or off. (The OLDBREAK option is
available if the toggle style of operation is not desired. If OLDBREAK is set and the BREAK command is
used against an address where a breakpoint is already set, an error message is issued.)

The breakpoint is taken (that is, execution is interrupted and the operator notified) just prior to the
execution of the indicated instruction. A maximum of 64 breakpoints may be active at one time.
Breakpoints remain in effect until they are explicitly cleared (through the Break window).

100 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

You can associate a list of commands with the breakpoint. These commands are executed when the
breakpoint is taken, before control is returned to you. The commands are specified at the end of the
BREAK command, separated from the address and each other by vertical bars (|). If a command receives
a non-zero return code, the remaining commands in the list are not executed.

z/VM IDF provides two types of instruction breakpoint, PER and non-PER. If PER is enabled (with the
Break window or SET PER command) then all breakpoints are PER breakpoints. Likewise, if PER
is disabled, all breakpoints are non-PER breakpoints.
v PER breakpoints are implemented by means of PER Instruction Fetch and Branch events, and

are only possible so long as the processor can be kept in Extended Control mode. In some
cases, for example when an SVC is issued in a read-only DCSS, Extended Control mode is
dropped by CMS.

v Non-PER breakpoints are implemented by temporarily inserting an invalid opcode at the
indicated location.

For more information about the distinction between the two available breakpoint types, see “PER
versus non-PER mode” on page 56.

z/OS IDF provides two types of instruction breakpoint, SVC 97 and non-SVC 97.
v SVC 97 breakpoints are implemented by temporarily inserting an SVC 97 instruction at the

indicated location.
v Non-SVC 97 breakpoints are implemented by temporarily inserting an invalid opcode at the

indicated location.

For more information about the distinction between the two available breakpoint types, see
“Breakpoint method selection (TSO)” on page 41.

z/VSE IDF provides one type of breakpoint.
v A breakpoint is implemented by temporarily inserting an invalid opcode at the indicated

location.

If a WATCH command with a condition is issued for an address at which there is a breakpoint, that
breakpoint is converted into a watchpoint. If commands were specified with the original breakpoint, they
are associated with the watchpoint unless commands were specified with the WATCH command.

If a breakpoint is placed within the execution path of the subroutine to be skipped, execution stops at
that breakpoint.

IDF verifies that there is a valid instruction at the breakpoint address, and rejects the BREAK command
(with a message) if not. This test is not infallible. Certain combinations of DATA can appear as valid
instructions. For example X'1E14' might be data or it might be an ALR R1,R4. IDF lets you install a break
here.

For non-PER and non-SVC 97 breakpoints, IDF uses an invalid instruction of the format x'02xx', to cause
a program-check (operation exception), which gives IDF control to handle the breakpoint logic. At the
time of handling the breakpoint, IDF reinstalls the original instruction bytes for execution. But if you
manage to install a non-PER breakpoint (that is, x'02xx') on top of program DATA (which looks like an
instruction), then IDF never gains control to remove its x'02xx' from your program's DATA. So IDF
corrupts valid data, potentially leading to bizarre program behavior. Take care to install breakpoints only
on valid target program instructions.

IDF establishes breakpoints by modifying target instructions to invalid opcodes (or SVC 97 instructions if
SVC97 under TSO is in effect). The DISASM window only displays the original instruction. If a
breakpoint is established on an instruction which is the target of an EXecute instruction, then the EX
instruction will fail.

Chapter 10. Commands and operating procedures 101

z/VM and z/VSE
As part of the test for a valid instruction, IDF backs up 2 bytes from the breakpoint instruction
(assuming that the instruction appears valid so far), and checks for:
On CMS

SVC 201 (x'0AC9'), SVC 202 (x'0ACA'), and SVC 203 (x'0ACB').
On z/VSE

SVC 34 (x'0A22')

Each of these SVCs may be followed by DATA bytes. If IDF finds any of these codes preceding
the breakpoint address, IDF assumes that the breakpoint instruction is in fact DATA for the SVC,
and prevents the breakpoint installation.

This check cannot be completely certain that the x'0Axx' preceding the breakpoint address is in
fact an SVC. It is possible that it is also DATA, or perhaps the last 2 bytes of a 4-or 6-byte
instruction. However the risk of either of these is small, and since the result of allowing a
breakpoint to be installed on top of SVC 203 data (for example) is catastrophic, being
over-zealous in its checking is worthwhile.

If IDF rejects (due to the above SVC test) an attempted breakpoint installation on what you know
for certain is a valid instruction you should be able to successfully install the break on the next
instruction.

See also “SET BREAK” on page 175.

Return codes
0 Operation successful
5 Syntax or other error in expression
6 Location does not contain a valid instruction, location is read only and PER is unavailable, or a

breakpoint already set at that location and the OLDBREAK option is on.

BRIEF
Controls the display of declaration information when a variable is displayed.

�� BRIef ON
OFF

��

ON Disables the display of declaration information.

OFF
Enables the display of declaration information. This is the initial setting.

The COMPACT option is initially ON, which also suppresses the declaration information. To display the
declaration information, both the COMPACT and the BRIEF options must be OFF.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

102 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

CALLERS
Displays information for each generation in the program caller hierarchy.

�� CALlers
window

�

*

;

generation

��

window
A LSM Information window. Select by a Window Specification, or by placing the cursor in the
window.

If supplied, the window must be an LSM Information window. If omitted, and the cursor is not in an
LSM Information window, uses the first LSM Information window. If no LSM Information window is
open, one is opened.

* Information is shown for all caller generations, beginning with the current location and followed by
all previous generations along the save area chain until either:
v the save area back link is zero
v the save area back link contains an invalid address
v the generation specified by the SALIMIT command is reached

generation
A program caller generation.

The program caller generations numbering convention is:
0 Current program
1 Parent (caller)
2 Grandparent (caller of caller), and so on

When supplied, information is displayed for only the nominated caller generations.

The information displayed for each generation in the program caller hierarchy includes:
v Current execution location, as:

– Memory location, in IDF symbolic format
(module.CSECT)Stmt#nnnnn+offset

– Logical location
program-block-name+offset

This location is only provided when extract data was loaded, for the program. Extra information
may also be used from data areas in the program's storage.

v Save Area Header
v Save Area register values, if applicable

Use the SAREGS command to enable and disable the display of the Save Area header and registers in the
CALLERS display. The Save Area registers are formatted according to the IDF ROWSTYLE option setting.

Use the SALIMIT command to control the maximum depth of the CALLERS display. This is intended to
prevent problems when the program call chain is damaged, or is of unexpected depth (due to runaway
recursion).

The calling hierarchy information display persists until:

Chapter 10. Commands and operating procedures 103

v A CALLERS command without arguments is issued when the current Call Hierarchy command has no
arguments.

v The window is closed with a CLOSE command.
v Another IDF Language command such as VARIABLE, STRUCTURE, ARRAY, TYPE, PLOCATES,

LANGUAGE STATUS, or MAP is issued, which directs IDF to update the LSM Information window
with new information.

v The target program completes execution.

Examples
CALLERS
CALLERS 0;99

CHARACTER
Sets or queries the format used to display the data for character variables.

�� CHAracter
EBCdic

*
ASCii
CHAracter
HEX
PACked
ZONed

��

EBCDIC
Character variables are EBCDIC, with unprintable characters (X'00' to X'3F', X'FF') displayed as .
(periods).

* Character variables are displayed in the default format (EBCDIC).

ASCII
Character variables are ASCII, with unprintable characters displayed as . (periods).

CHARACTER
Character variables are displayed as EBCDIC or ASCII, tracking the value of the ASCII setting
selected for the DUMP command. Unprintable characters are displayed as . (periods).

HEX
Character variables are displayed in hexadecimal. This mode is especially useful for buffers which are
declared as CHAR and which contain non-character information.

PACKED
Character variables of less than 24 bytes are displayed in Packed Decimal format. Variables exceeding
this length are displayed in hexadecimal. This mode is especially useful for examining data in a
language without native Packed Decimal variables.

ZONED
Character variables of less than 48 bytes are displayed in Zoned Decimal format. Variables exceeding
this length are displayed in EBCDIC. This mode is especially useful for examining data in a language
without native Zoned Decimal variables.

If the display format setting is not specified, the current display format for character variables is shown
in a message.

104 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid character variable display format

CHECK
Controls the checking of selective input values when variable information is displayed or altered by
overtyping.

�� CHEck BOUnds
NEGative
SUBstring

ALL
*

ON
OFF

��

BOUNDS
Controls array index specification processing.

ON Array indices must be inside the declared range.

OFF
Array indices outside the declared range may be specified, allowing you to follow errant program
results.

This option also affects scrolling behavior of the ARRAY command.

NEGATIVE
Determines whether negative values can be assigned to Unsigned Fixed variables.

ON An error message is issued and the variable is not updated.

OFF
A warning message is issued and the variable is updated. Attempts are made to update both the
storage and register portions of shadowed variables, but expressions derived from variables are
not reevaluated.

SUBSTRING
Controls substring index specification processing for character string and bit string variables.

ON Substring indices must be inside the declared range.

OFF
Substring indices outside the declared range (including negative values) may be specified,
allowing you to follow errant program results.

ALL | *
Applies ON or OFF processing to BOUNDS, NEGATIVE, and SUBSTRING.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

Chapter 10. Commands and operating procedures 105

CLOSE
Closes a window.

�� CLOse
window

��

window
A window. Select by a Window Specification or by placing the cursor in the window.

Return codes
0 Operation successful
1 No window selected.

COLORS
Sets the colors used to display IDF display elements.

�� COLors
COLours

MHTI ��

MHTI
A four-letter color specification. Each position indicates the color for a screen element. The positions
are:
1 Messages
2 Headings
3 Text
4 Input areas

Valid letters are:
B Blue
G Green
P Pink
R Red
T Turquoise
Y Yellow
W White

Examples
SET COLORS RYGB

This example sets the following color scheme:
Messages

Red
Headings

Yellow
Text Green
Input Blue

106 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

COMMAND
Performs the IDF command specified on the command line.

�� COMmand text ��

IDF-command
The IDF command to be executed.

arguments
Arguments to be passed to the command. The particular arguments depend on the command that is
supplied.

The command line is examined for the name of the IDF command. If the command is not known to IDF,
the IMPMACRO option is checked. If this indicates that implied macro processing is desired, the
indicated macro is used as the command.

The command name is then temporarily removed from the command line, so that any arguments which
are present are available to the specified command. The command is then executed as if you have
pressed a PF key.

If the command line is empty and no input fields in the remainder of the screen are changed, the only
function performed is to move the cursor to the command line.

Return codes

The return code when COMMAND is issued by a macro is the propagated return code from the IDF
command.

COMPACT
Minimizes the number of lines used for variable display.

�� COMPact ON
OFF

��

ON As with BRIEF ON, disables the display of declaration information. This is the initial setting.

To further reduce the number of display lines, if the length of the variable value permits the variable
name and contents are shown on the same display line. If sufficient space exists, the variable location
information is also shown in this case.

OFF
As with BRIEF OFF, enables the display of declaration information.

When you display a variable, IDF normally uses multiple lines of the display to show all the variable
information. When variables with short names and short formatted values are displayed, much of these
display lines contain blanks. Use the COMPACT display mode to minimize the number of lines used for
variable display.

As with the BRIEF display mode, the optional variable declaration information is suppressed.

Chapter 10. Commands and operating procedures 107

To maximize the number of variables that can be displayed, you can use the SPACE OFF command to
eliminate the blank line optionally generated between variables.

The COMPACT option is initially ON, which also suppresses the declaration information. To display
declaration information, the COMPACT and BRIEF options must both be OFF.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

CREGS (CMS only)
Toggles the register displayed between the General Purpose and Control Registers. Valid only while PER
exploitation is disabled (option PER is N).

�� CREGs ��

The CREGS command opens the Current Registers window if it is not already open.

Return codes
0 Register display was toggled
6 Unable to comply due to PER setting

CURSOR
Provides IDF macros with some control over cursor positioning.

�� CURsor STAY
COMmand
DISasm
DUMP

(1)
xx yy zz

��

Notes:

1 2-digit hexadecimal values, separated by blanks.

STAY
Leaves the cursor at the position it had when the PF key was pressed.

COMMAND
Positions the cursor at the start of the command line.

DISASM
Places the cursor in the first input field of the Disassembly window.

DUMP
Places the cursor in the first input field of the Dump window.

108 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

xx yy zz
Positions the cursor at an absolute position on the screen.

These three values are blank separated, 2-digit hexadecimal numbers representing:
v The window containing the cursor
v The row within the window of the cursor
v The column within the window of the cursor

Examples
SET CURSOR STAY
SET CURSOR COMMAND
SET CURSOR DISASM
SET CURSOR DUMP
’SET CURSOR’ varname

DBREAK
Sets or clears a deferred instruction breakpoint.

�� DBREak
address

� | command

��

address
An address. If an expression, the expression is used to provide the address.

If omitted, the address is determined from the cursor position. If it is not possible to determine an
address from the cursor position (for example, when the cursor is on the command line and the
command line is empty), the Break window is opened if it is not already open, or closed if it is open.

command
A command to be executed.

This function is a variation of the BREAK function (see “BREAK” on page 100). Breakpoints established
with this command are placed in a special IDF table.

If an address is supplied, either as an expression on the command line or by means of cursor position, a
deferred breakpoint is set at that address. If a breakpoint or a watchpoint is already set at the specified
address, it is cleared. The DBREAK command acts as a toggle to turn a breakpoint on or off. (The
OLDBREAK option is available to disable the toggle style of operation. If OLDBREAK is set and the
DBREAK command is used against an address where a breakpoint is already set, an error message is
issued.)

The DBREAK command only works on TSO if the SVC97 option is in force.

If the module containing the deferred breakpoint is not in storage (or defined to IDF):
v IDF monitors program loading
v When IDF detects the module is loaded, (or the TRIGGER LOAD command is issued) a standard

instruction breakpoint is established at the location specified within the module.
v The deferred breakpoint remains active:

– if the module is later dropped from IDF's module list (and possibly removed from storage), the
standard instruction breakpoint is removed automatically.

Chapter 10. Commands and operating procedures 109

– if the module is once again loaded into storage, the deferred breakpoint is again triggered, and a
new standard instruction breakpoint established.

Thus IDF deferred breakpoints may be termed “sticky”.

If the module containing the deferred breakpoint is in storage, the initial monitoring of program loading
is bypassed.

If any deferred breakpoints are active, they are shown in a special section of the Break window. See
“BREAK” on page 100 for details regarding the operation of the Break window.
1. The full syntax for all IDF symbols is:

��
(section-name)
(module-name.section-name)

SYMbol
+ offset
-

��

With most other IDF commands, you are working within the qualified module. This is the default
module name if module-name is omitted from the symbol specification.
The QUALIFY command makes the module you are about to load the default module. If this is not
done, you must be careful to explicitly specify the correct module name in the DBREAK command
parameter.
For dynamically loaded programs, see also “LANGUAGE LOAD” on page 129.

2. Deferred breakpoints are normally for modules not yet in storage. In this case, the expression must
specify a symbolic address, since the base address of a module is not known until after it is loaded by
another program or command.

3. Each time a new module is encountered, the module name is checked. If it matches the name of one
of the desired modules, IDF then attempts to load the symbol table (from the Load Module on z/OS,
from the MAP file on CMS, from the librarian MAP member in z/VSE). If this fails, IDF ignores the
module.

4. If no section or symbol is specified, the default is to establish the breakpoint at the entry point of the
module.
For example, to insert a deferred breakpoint at the entry point of the module MOD1, the command is:

DBREAK (MOD1.)

5. DBREAK supports an extension to the standard IDF symbol syntax. If * is specified as the module
name, the deferred breakpoint is triggered whenever a new module is loaded.

6. Only use external symbols in a DBREAK address expression.
7. While hexadecimal or decimal offsets may be used, this is not encouraged. The definition of specific

external symbols for use as deferred breakpoint locations ensures that operation are not affected as
section sizes (and hence offsets) change over the course of program development.

Return codes
0 Operation successful
5 Syntax or other error in expression

110 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

DETAIL
Controls the display of data for the structure components of intermediate depth. Initially, this data is not
shown.

�� DETail MINimum
MAXimum

number-of-levels
+ number-of-levels
- number-of-levels

��

MAXIMUM
Enables the display of intermediate component data.

MINIMUM
Disables the display of intermediate component data.

number-of-levels
Integer, indicating number of levels of structure component data to be displayed.

+ number-of-levels
Integer, indicating number of extra levels of structure component data to be displayed.

- number-of-levels
Integer, indicating the number of fewer levels of structure component data to be displayed.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
5 Arguments are invalid

DISASM
Displays a disassembly listing.

�� DISasm
window address

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a Disassembly window, uses the first Disassembly window.

address
An address specifying the storage location at which the disassembly listing begins.

If an address is supplied on the command line, or an address can be determined from the cursor
position, a disassembly of the indicated memory area is shown.

If no address is supplied, and an address cannot be determined from the cursor position, a
disassembly listing is displayed, beginning at the first instruction which previously appeared on the
disassembly display.

If the DISASM function is invoked when no Disassembly windows are open, one is opened.

Chapter 10. Commands and operating procedures 111

If the DISASM function is invoked when a Disassembly window is open, but no address is specified, the
selected window is closed.

If the DISASM function is invoked when a Disassembly window is open, and an address is specified, the
starting address of the disassembly in the selected window is changed.

By positioning the cursor in the first halfword of an instruction and pressing DISASM, you can make that
instruction the first one displayed.

If the cursor is positioned in the first halfword of the first instruction displayed, and that instruction is a
branch, the effective address of that branch instruction becomes the first instruction disassembled.

Return codes
0 Operation successful
5 Syntax or other error in expression
6 Specified address exceeds the current virtual memory size

DOWN
The DOWN command is a synonym of the NEXT command. For details, see “NEXT” on page 155.

DROP GLOBAL
Discards the information for stems from Global Storage.

�� DROp GLObal � stem-name. ��

stem-name
A Global Storage stem name. Each stem name must have a trailing period.

Return codes
0 Operation successful
1 Missing stem name
2 Stem name truncated
5 Stem name specified is not defined in Global Storage

DROP MODULE
Discards information known about a module and the symbols associated with the module.

�� DROp MODUle module-name ��

module-name
The name of the module for which information is discarded.

The module specified when IDF was invoked cannot be dropped.

112 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Return codes
0 Operation successful
1 Missing module name
2 Module name truncated
5 Module specified not known to IDF

DROP SYMBOLS
Discards symbols known to IDF.

�� DROp SYMbols
module-name

��

module-name
The name of the module for which symbols are dropped. If omitted, the symbols of the qualified
module are dropped.

DROP SYMBOLS and LOAD SYMBOLS (see “LOAD” on page 138) lets you use symbol information from
any file, providing the file is recognized by IDF.

DUMP
Displays a storage dump.

�� DUMP
window address

��

window
A Dump window. Selected by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a Dump window, uses the first Dump window.

address
The storage location at which the storage dump begins.

If an address is supplied on the command line, or an address can be determined from the cursor
position, a storage dump of the indicated memory area is shown.

If no address is supplied, and an address cannot be determined from the cursor position, a storage
dump listing is displayed, beginning at the first instruction which previously appeared on the dump
display.

If the DUMP function is invoked when no Dump windows are open, one is opened.

If the DUMP function is invoked when a Dump window is open, but no address is specified, the window
is closed.

If the DUMP function is invoked when a Dump window is open, and an address is specified, the starting
address of the storage displayed in the window is changed.

IDF provides two DUMP modes, symbolic and unformatted, toggled by the DUMPMODE command.

Chapter 10. Commands and operating procedures 113

The symbolic dump shows the names of storage areas along with the contents of each named area. The
unformatted dump shows the traditional storage dump.

The storage dump shown by the DUMP command is presented in the current dump format. Toggle the
dump format with the DUMPMODE command.

By positioning the cursor in a hexadecimal field displayed on the screen before pressing DUMP, you can
make that field the first one displayed.

If the cursor is positioned in the first field displayed, and that field is a fullword and in AMODE24, the
low-order 24 bits of the contents of that word specify the first location to DUMP. If in AMODE31, the
low-order 31 bits are used instead. If in AMODE64, the contents of that word and the next word are used
as the first location to dump.

Using this feature, it is easy to follow a linked list. Just place the cursor in the fullword that represents
the link word, and repeatedly press the DUMP key.

Return codes
0 Operation successful
5 Syntax or other error in expression
6 Specified address exceeds the current virtual memory size

DUMPMODE
Toggles the DUMP format between symbolic and unformatted.

�� DUMPMode ��

Return codes
0 Operation successful

EPNAMES
Displays the Entry Point Names window.

�� EPNAMES
section-name

��

section-name
The name of the first section to be displayed.

Return codes
0 Operation successful

If you invoke the EPNAMES function when no Entry Point Names window is opened, one is opened.

If you invoke the EPNAMES function when an Entry Point Names window is open, but you specify no
section-name, the window is closed.

114 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If you invoke the EPNAMES function and specify a section-name, and an Entry Point Names window is
open, the contents of the window change to display information about the entry point.

If the module that IDF loaded has more than one section-name, and thus more than one section-name is
loaded, you can use the PREVIOUS and NEXT commands to scroll the Entry Point Names window to
view the information for the extra section-names.

IDF derives the section-name in this manner:
v If the long name is eight characters or less, this is the uppercase representation of the name.
v If the long name is more than eight characters in length, the section-name is the first five characters,

followed by a double quote ("), followed by the last two characters of the long name, all in uppercase.
For example, the long name Set_IDF_Rules_message_in_ASMMSAM1-VChar is transformed to the short
name SET_I"AR.

You can modify this field by overtyping it.

EPOFFSET
Specifies the offset of the primary entry point within a program.

�� EPOffset entry-point-offset ��

entry-point-offset
An expression which is resolved to the entrypoint offset value. This entrypoint offset is the entrypoint
address of the program less the start (base) address of the program.

Example
SET EPOFFSET X’24’

EXITEXEC
Enables or disables (toggles) exit routine processing.

�� EXItexec ��

If the current exit routine is present and enabled, it is invoked when execution of the target program is
normally interrupted to notify the operator of an unusual event (such as a breakpoint). The exit routine
then determines whether to notify the operator of the event.

If exit routine processing is disabled, the exit routine is not invoked and the operator is notified as usual
when one of these events occurs.

For more information, see Chapter 13, “The IDF exit routine,” on page 213.

Return codes
0 Operation successful
6 Exit routine not found

Chapter 10. Commands and operating procedures 115

EXLIMIT
Sets the maximum LSM stemmed array index during EXTRACT LANGUAGE commands execution.

�� EXLimit max-stemmed-array-index ��

max-stemmed-array-index
Maximum stemmed array index. Integer between 1 and 9999999. The initial value is 20000.

When information is written to the stemmed array, user free storage is consumed. This can present a
problem if data is extracted for extremely large variables, or for variables such as unbounded bit or
character strings which have no upper limit (aside from the end of machine storage). In these cases, no
storage remains for application or IDF operation. EXLIMIT helps prevent this from happening.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
5 Arguments are invalid

FIND
Locates a string and displays the section of code where it occurs.

�� Find
window

string
* start-col

finish-col
FIRst
LASt
NEXt
PREvious

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted, and the cursor is not in a Disassembly window, uses the first Disassembly window.

string
The group of characters being searched for, the search string.

Enclose this search text in quotes if it is numeric or contains embedded blanks. Both "..." and '...' are
accepted.

* Use the current search string.

start-col
The column at which searching starts. Integer. If omitted, searching starts from column 1.

finish-col
The column at which searching ends. Integer greater than the start column. If omitted, searching
finishes at column 80.

FIRST
Begin search at lowest address, and look for search string in a forward direction.

116 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LAST
Begin search at highest address, and look for search string in a reverse direction.

NEXT
Begin search at current address, and look for search string in a forward direction.

PREVIOUS
Begin search at current address, and look for search string in a reverse direction.

The function of this command is essentially the same as the ISPF editor FIND command. The search
begins at the first source line shown on the screen; the target code, if found, is displayed at the top of the
screen.

Unless otherwise qualified, the search is performed from the current address, in the direction last
specified.

Examples
FIND string

f ’text’
f text
f text

f info first
f init(next
f * prev
f bit(last

find =3 ’window 3’

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
5 Arguments are invalid
6 Specified string was not located or the search was not conducted

FIRST
Displays the source code corresponding to the lowest memory address.

�� FIRst
window

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a Disassembly window, uses the first Disassembly window.

Return codes
0 Operation successful

Chapter 10. Commands and operating procedures 117

FIXED
Sets or queries the format in which the data for fixed binary variables are displayed.

�� FIXed
BINary DECimal

*
HEX

��

DECIMAL
Fixed binary variables are displayed in decimal. This is the initial value.

* Fixed binary variables are displayed in the initial format (DECIMAL).

HEX
Fixed binary variables are displayed in hexadecimal.

If the display format setting is not specified, the current display format for fixed binary variables is
shown in a message.

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid fixed binary variable display format

FLOAT
Sets or queries the format in which the data for float variables is displayed.

�� FLOat
STD
STAndard
FIXed

*
SCIence
HEX

��

STD | STANDARD | FIXED
Float variables are displayed in fixed-point (or standard) format - for example, as 145.0056. This is the
initial value.

* Float variables are displayed in the initial format (STD).

SCIENCE
Float variables are displayed in scientific format - for example, as 1.450056E+02.

HEX
Float variables are displayed in hexadecimal. Use this option to display binary floating-point
variables.

If STD is selected, and the number cannot be displayed in standard format, it is displayed in scientific
format.

118 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Numbers may be entered in either fixed-point or scientific format when FIXED or SCIENCE formats are
selected.

If the display format setting is not specified, the current display format for float variables is shown in a
message.

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid float variable display format

FMT
The FMT command is a synonym of the FORMAT command. For details, see “FORMAT” on page 120.

FOLLOW
Makes a Dump window follow the contents of a register or storage location as program execution
progresses.

�� FOLlow
window address

OFF

��

window
A Dump window. Select the window by a Window Specification or by placing the cursor in the
window. If omitted and the cursor is not in a Dump window, uses the first Dump window.

address
The address to be followed. If an expression, the expression is used to provide the address.

If omitted, the address is determined from the cursor position. If it is not possible to determine an
address from the cursor position (for example, when the cursor is on the command line and the
command line is empty), the current follow state of the selected window is displayed.

If R0 to R15, the indicated register's contents determine the starting DUMP address as target program
execution progresses.

The argument “R1” means follow the contents of R1, but the argument “0(R1)” means follow the
contents of the storage area now pointed to by R1. If in AMODE64, this is an 8-byte storage area,
otherwise it is a 4-byte storage area.

If no register is specified, is the address of a storage area whose contents are to determine the area to
be shown in the selected Dump window as program execution progresses. This includes addresses
specified by means of cursor position. The storage area need not be aligned.

OFF
Following is turned off for the window. The window contents change to reflect any change in the
contents of the current address.

Each open Dump window can have its own follow address or none at all.

Return codes
0 Operation successful
5 Syntax or other error in expression
6 Specified address exceeds the current virtual memory size

Chapter 10. Commands and operating procedures 119

FORMAT
Controls the way in which a variable is displayed, or shows the display format for the variable.

�� FORmat
FMT

�

variable-name
;

variable-name *
format-type

��

variable-name
The variable for which the format is being set.

If only one variable is supplied, and there are no following parameters, then a message is displayed.
The message indicates the display format for the variable.

* The variables listed inherit their display format from the current display format for the underlying
variable classes.

format-type
The display format for the listed variables.

Must be appropriate to the underlying data classes of the variables:
Binary float

HEX
Bit BIT|HEX
Char EBCDIC|ASCII|CHAR|HEX|PACKED|ZONED
Fixed DECIMAL|HEX
Hexadecimal float

STD|STANDARD|FIXED|SCIENCE|HEX
Packed Decimal

DECIMAL|HEX
Zoned Decimal

DECIMAL|HEX

See the following commands for more details:
v “BIT” on page 99
v “CHARACTER” on page 104
v “FIXED” on page 118
v “FLOAT” on page 118
v “PACKED” on page 158
v “ZONED” on page 200

The format in which a variable is displayed is set in two ways:
1. With the appropriate IDF command to change the default display format for the all variables within

the fundamental data type (or class) to which the variable belongs
2. With the FORMAT command, to specify an explicit display format for this particular variable. This

overrides the class display format.

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid display format for specified variables

120 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

FPC
Changes the contents of the Floating Point Control Register (FPC).

�� FPC FPC-value ��

FPC-value
The new FPC value. From one to eight hexadecimal digits, right-aligned.

Example
SET FPC 0 FE430000

FPR
Changes the contents of a Floating Point Register (FPR).

�� FPR FPR-number FPR-value ��

FPR-number
The FPR number, which can be in the range 0 - 15.

FPR-value
The new FPR value. From one to sixteen hexadecimal digits, right-aligned.

Example
SET FPR 0 FE43000000000000

GLOBALS
Displays information about Global Storage stems.

�� GLObals ��

The LSM Information window containing the GLOBALS display is closed if you issue another GLOBALS
command.

To define Global Storage areas, see “SET GLOBAL STEM” on page 176.

The GLOBALS command is meant primarily for debugging situations, or for verifying that IDF
understood your commands.

Return codes
0 Operation successful
6 There are no Global Storage stems defined.

Chapter 10. Commands and operating procedures 121

GOTO
Evaluates an expression and places it in the address portion of the Program Status Word (PSW).

�� GOTo
PSW

expression ��

expression
Specify as an address expression or by the cursor position.

Return codes
0 Operation successful
1 No address specified
5 Syntax or other error in expression
6 Conditions do not permit completion of command

GPACK
Returns the Global Storage data storage areas that no longer contain Global Storage stem data to the
operating system free storage pool.

�� GPAck ��

The GPACK command helps when free storage is at a premium.

Return codes
0 Operation successful
Other Error occurred while packing Global Storage data storage areas. This is most likely caused by an

overlay of the Global Storage data AREA control information by an errant application program
under test.

GPR
Changes the low-order 32 bits of a General Purpose Register (GPR).

�� GPR register-number expression ��

register-number
The GPR number. An integer from 0 to 15.

expression
The new GPR value. Values are right-aligned with leading zeroes.

Example
SET GPR 2 ALLOPEN+X’44’

122 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

GPRG (z/OS only)
Changes the contents of a 64-bit of a General Purpose Register (GPR).

�� GPRG register-number expression ��

register-number
The GPR number. An integer from 0 to 15.

expression
The new GPR value. Values are right-aligned with leading zeroes.

Example
SET GPRG 0 X’1234000123456’

GPRH (z/OS only)
Changes the high-order 32 bits of a 64-bit of a General Purpose Register (GPR).

�� GPRH register-number expression ��

register-number
The GPR number. An integer from 0 to 15.

expression
The new value to be placed in the upper 32 bits of the register. Values are right-aligned with leading
zeroes.

Example
SET GPRH 0 1200

GSTATUS
Displays information about the storage used to contain the Global Storage stem data which was loaded
with SET GLOBAL STEM commands.

�� GSTAtus ��

The LSM Information window containing the GSTATUS display is closed if you issue a GSTATUS
command when the window is open. If not opened, it is opened.

The information includes:
v number of Global Storage stems
v Global Storage storage consumption (total, direct, pooled)
v Global Storage storage pool utilization, including the number of areas in the pool that are unused

Chapter 10. Commands and operating procedures 123

The GSTATUS command helps when free storage is at a premium.

When Global Storage data is removed from storage with DROP GLOBAL, the storage areas which
contained the extract data are retained for use by later SET GLOBAL stemname commands. Use the
GPACK command to return to the operating system free storage pool those storage areas that no longer
contain Global Storage data.

Return codes
0 Operation successful

HIDE
Controls the display of source code and disassembly.

�� HIDe

�

DISasm

ALL
*

SOUrce

(1)
separator COMments

DEClares
DCLs

MACros
NOCode

��

Notes:

1 An option can be chosen no more than once.

DISASM
Show source code only, without interspersed assembler code.

ALL | *
Show disassembled assembler code only, without source code. The display of comments, declarations,
macro expansions, and source lines with no corresponding object code is also disabled, so that these
lines are excluded when source display is later enabled by a SHOW SOURCE or SHOW BOTH
command. These may be enabled by appropriate SHOW commands.

SOURCE
Show disassembled assembler code only, without source code.

COMMENTS
Exclude block comment source when source code is displayed.

SEPARATOR
A comma, blank, or semicolon. Separates SOURCE and its suboptions.

DECLARES | DCLs
Exclude declaration source when source code is displayed.

MACROS
Exclude macro expansion source when source code is displayed.

NOCODE
Exclude source lines with no corresponding object code when source code is displayed.

124 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The HIDE command assumes that everything is showing, then excludes (hides) whatever you specify.
Everything else is then shown, regardless of whether it is shown or hidden. “SHOW” on page 181
provides an alternative means of displaying and hiding items.

Return codes
0 Operation successful
2 Keyword truncated
5 Invalid information type keyword

HISTORY
Allows review of the history information maintained by IDF when the PATH or PATHFILE option is set.

�� HISTory ��

IDF maintains a history of the last 1,023 instructions executed, and the order in which they were
executed. HISTORY is only valid when the PATH or PATHFILE option is ON.

When the HISTORY command is executed, an arrow is placed beside the last instruction that was
executed. This arrow appears on the right side of the screen, just to the left of the instruction count in the
first Disassembly window. The arrow is only displayed against the disassembled assembler code. If the
Disassembly window is displaying source code, then you need to issue the SHOW DISASM command to
see the arrow.

While the HISTORY arrow is shown in the window, the PREVIOUS and NEXT commands do not scroll
the open windows on the screen. Instead, they move the arrow to the previously executed instruction or
to the following instruction.

The display remains in this state until a DUMP, DISASM, RUN, or STEP command is executed.

This lets you review the series of instructions that lead to an incorrect result.

Return codes
0 Operation successful
6 PATH option is not ON

ICOUNT
Displays the number of instructions executed since the last ICOUNT command.

�� ICOunt ��

After the number is displayed, it is reset to zero. If the PATH option was not set ON, it is set on by the
ICOUNT command.

Return codes
0 Instruction execution count successfully displayed

Chapter 10. Commands and operating procedures 125

KWDSYN
Defines a synonym of an IDF keyword.

�� KWDSYN oldkwd newkwd ��

oldkwd
The existing IDF keyword. It may be abbreviated to the permitted minimum.

newkwd
The overriding synonym. It can have a length different from the IDF keyword it is a synonym of.
Specify its minimum abbreviation by putting that part of the new keyword in upper case.

The synonym does not replace the IDF keyword, but it is recognized as the IDF keyword and given all its
properties.

Examples

v The following command equates the keyword DUMP with the keyword DUMP. However, the new
keyword has a minimum abbreviation of D, where the old one's minimum abbreviation was DUMP.
set kwdsyn dump Dump

v The following command replaces the keyword DISASM with SOurce.
SET KWDSYN DIS SOurce

LANGUAGE +
Scrolls information in an LSM Information window.

�� LANguage
window

+
- scroll-number-of-lines

��

window
A LSM Information window. Select by a Window Specification or by placing the cursor in the
window. If a Window Specification is not present and the cursor is not in a LSM Information
window, uses the first LSM Information window.

+ Scroll forward.

- Scroll backwards.

scroll-number-of-lines
The number of lines to scroll (forwards or backwards).

The default value is the scroll amount specified by the last LANGUAGE SCROLL command (see
“LANGUAGE SCROLL” on page 133).

Many IDF commands provide user feedback in the form of messages which are displayed in a dedicated
area above the IDF command line. Some messages provide sufficient information, for example, when an
error occurs, but other commands need more space for displays, for example, VARIABLE, STRUCTURE,
and LANGUAGE STATUS.

126 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

To handle this situation, IDF provides many LSM Information windows. The first LSM Information
window opens automatically when needed, and you can open more with the IDF OPEN command.

There may still not be enough screen lines to display all of the information.

In this situation, IDF provides a “More: + –” indicator in the upper right corner of each LSM Information
window. You can now scroll the LSM Information window in IDF with the LANGUAGE + and
LANGUAGE – commands.

LANGUAGE + scrolls the LSM display forward, and reissues the current LSM command. When the last
line is displayed, the message is not issued, and further forward scrolling does not occur.

A LANGUAGE + command is automatically issued by IDF when the cursor is within the LSM
Information window, and the NEXT IDF command is issued.

A LANGUAGE – command is automatically issued by IDF when the cursor is within the LSM
Information window, and the PREVIOUS IDF command is issued.

Return codes
0 Operation successful
2 Keyword truncated
5 Arguments are invalid

LANGUAGE COLOR
Controls the color used to display the source code.

�� LANguage COLor
COLour

BLUe
RED
PINk
GREen
TURquoise
YELlow
WHIte

��

The available colors are:
v BLUE
v RED
v PINK
v GREEN
v TURQUOISE
v YELLOW
v WHITE

Initially, source code is displayed in the color you have specified for IDF display of text data.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
5 Not valid color keyword

Chapter 10. Commands and operating procedures 127

LANGUAGE COMMENTS
Enables or disables the block comment display.

�� LANguage COMments ON
OFF

��

ON Block comment display enabled.

OFF
Block comment display disabled.

LANGUAGE DEBUG
Displays line-mode debug information for all interactions on the LSM interface.

�� LANguage DEBug qualifiers ��

This command is used for debugging the IDF Language Support internal interfaces.

It is not intended as a general user interface.

qualifiers
Options that limit this information to specific categories.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

LANGUAGE DECLARES
Enables or disables declare display.

�� LANguage DEClares
DCL

ON
OFF

��

ON Declare display enabled.

OFF
Declare display disabled.

128 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LANGUAGE DROP
Removes language extract data from storage, freeing the space for reuse by new extract files loaded by
subsequent LANGUAGE LOAD commands.

�� LANguage DROp *
extract-file-name

��

* All extract files in memory are removed from storage.

extract-file-name
The extract file name specifying the loaded compiles to be removed from storage. All compiles with
the extract file name matching this value are removed.

If no extract data matches the argument, an error message is displayed.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
5 Arguments are invalid
28 The specified extract file was not loaded with LANGUAGE LOAD

LANGUAGE LOAD
Loads an extract file, optionally associating it with an executable module.

�� LANguage LOAd extract-file-name
ASMLANGX

file-type

*

file-mode (MODUle module-name
��

extract-file-name
The extract file that is loaded.
v On CMS, the file name (FN) of the extract file created by ASMLANGX.
v On z/OS, the PDS member name of the extract file created by ASMLANGX. For z/OS sequential

files (DSORG(PS)), a dummy name must be specified, but is ignored.
v On z/VSE, the librarian member name of the extract file created by ASMLANGX.

If not specified (the file type default accepted) IDF uses the entries in the XPATH to locate the extract
file.

ASMLANGX
The default file type for extract file (normally not specified).

file-type
The file type of the extract file.
v On CMS, the file type (FT) of the extract file created by ASMLANGX.
v On z/OS, the DD name allocated to the extract file created by ASMLANGX.
v On z/VSE, not used.

file-mode
The file mode of the extract file.

Chapter 10. Commands and operating procedures 129

v On CMS, the FM of the extract file created by ASMLANGX.
v On z/OS, not used, ignored if specified.
v On z/VSE, not used, ignored if specified.

* Indicates that all disks are to be searched in order.

MODULE
Indicates that a module name is being specified.

module-name
The module with which to associate the extract file.

Multiple instances of the same extract file may be loaded as long as each specifies a different
module-name.

If a module is not specified:
v If the extract file contains information that needs load-time resolution the module defaults to the

qualified target module.
v Otherwise, the extract file is generic, where it is freely associated with any relevant code sections in

all MODULES.

The LANGUAGE STATUS command (see “LANGUAGE STATUS” on page 133) shows the module
name specified when an extract file is loaded.

The MAP command (see “MAP” on page 142) shows the association between extract files and
program code sections.

Return codes
0 Operation successful.
1 Missing keyword.
2 Keyword truncated.
3 Keyword unknown.
28 File not found.
29 File was already loaded with the same module specification.
201 The input file is from a version of ASMLANGX that is not supported by the LSM.
202 Duplicate or invalid scope record in input file.
203 More source statements in file than indicated by the scope record.
204 Duplicate or invalid number-of-symbol record in the input file.
205 Symbol id number larger than maximum symbol number was encountered in a symbol record.
206 Symbol id number larger than maximum symbol number was encountered in an array record.
207 File contains no records of a known format.
208 Duplicate or invalid check record in the input file.
209 Duplicate or invalid address expression record in the input file.
210 Duplicate or invalid structure layout record in the input file.
211 Symbol id number larger than maximum symbol number was encountered in a respecify record.
212 Address expression id number larger than maximum address expression number or symbol id

number larger than the maximum symbol number was encountered in an address expression
record.

213 Address expression id number larger than maximum address expression number or symbol id
number larger than the maximum symbol number was encountered in an address expression
respecify record.

214 Symbol id number larger than maximum symbol number was encountered in a symbol
optimization record.

215 Symbol id number larger than maximum symbol number was encountered in a structure layout
record.

216 Errors were encountered unpacking a source record.
217 Base debugger (IDF) version is too low to support the required function.
218 Module private-code CSECT was not found. The functions in the extract file cannot be located in

the IDF symbol table.

130 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

219 Scope ID record present, but it was not preceded by a Scope record.
220 Symbol id number larger than maximum symbol number was encountered in a scope ID record.
221 Duplicate or invalid CSECT record in the input file.
222 CSECT record expected but not found in the input file.
223 CSECT id number larger than maximum CSECT number was encountered in a PC (Private Code)

lookup record.
224 CSECT id number larger than maximum CSECT number was encountered in a source record.
225 CSECT id number larger than maximum CSECT number was encountered in a symbol record.
226 Symbol id number larger than maximum symbol number was encountered in a constant record.
227 Error occurred building the statement offset table.
237 Duplicate or invalid On Event Map record in the input file.
238 Duplicate or invalid Secondary Entry Point record in the input file.
239 Symbol id number larger than maximum symbol number was encountered in a Secondary Entry

Point record.
240 Duplicate or invalid External Symbol List record in the input file.
241 Symbol id number larger than maximum symbol number was encountered in an External Symbol

List record.
242 Duplicate or invalid Symbol Display Format record in the input file.
243 Symbol id number larger than maximum symbol number was encountered in a Symbol Display

Format record.
244 Duplicate or invalid Class Layout record in the input file.
245 Symbol id number larger than maximum symbol number was encountered in a Class Layout

record.
246 Duplicate or invalid Class Hierarchy record in the input file.
247 Symbol id number larger than maximum symbol number was encountered in a Class Hierarchy

record.
248 Symbol id number larger than maximum symbol number was encountered in an OverLoaded

Symbol record.
249 Duplicate or invalid Linkage Convention record in the input file.
250 Symbol id number larger than maximum symbol number was encountered in a Linkage

Convention record.
251 Symbol id number larger than maximum symbol number was encountered in a Parameter List

record.
252 Duplicate or invalid Compile Information record in the input file.
253 Duplicate or invalid OverLoaded Entry Stmt record in the input file.
254 Symbol id number larger than maximum symbol number was encountered in an Overloaded

Entry Stmt record.

1xxx

Error occurred during scan of the extract file.

The values for xxx are:
1yy yy is the RC from File_Open
2yy yy is the RC from File_Read
4yy yy is the RC from File_Point
5yy yy is the RC from Mem_Allocate
6yy yy is the RC from Mem_Free
7yy yy is the RC from File_Close
8yy yy is the RC from File_Note

Chapter 10. Commands and operating procedures 131

LANGUAGE MACROS
Enables and disables the display of assembler source generated by macros.

�� LANguage MACros ON
OFF

��

ON The display of assembler source generated by macros is enabled.

OFF
The display of assembler source generated by macros is disabled. This is the initial setting.

For more details see the command description of SHOW and HIDE.

LANGUAGE OPTIONS
Displays the current value for each IDF Language Support setting.

�� LANguage OPTions ��

Displays the current value of the following options or settings:
v Show
v Debug
v Scroll
v Detail
v Major
v Settings save stack nesting level
v Checks
v LSM stem
v EXLIMIT
v XPATH
v Bit variable format
v Char variable format
v Fixed variable format
v Float variable format
v Packed variable format
v Zoned variable format

The OPTIONS command is meant primarily for debugging situations, or for checking that IDF
understood your commands.

The LSM Information window containing the LANGUAGE OPTIONS display closes if you issue a second
LANGUAGE OPTIONS command.

Return codes
0 Operation successful

132 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LANGUAGE SCROLL
Sets the default for the number of screen lines by which an LSM Information window is scrolled when
the LANGUAGE command is issued.

�� LANguage SCRoll 0
number-of-lines

MAX
*

��

0 Scrolling is disabled.

number-of-lines
Scrolling is by this number of lines

MAX | *
Scrolling is by the maximum number of lines (the current size of the LSM Information window)

The current scroll amount value is displayed as part of the LANGUAGE OPTIONS command
information.

Return codes
0 Operation successful
2 Keyword truncated
5 Arguments are invalid

The current scroll amount value is displayed as part of the LANGUAGE OPTIONS command
information.

LANGUAGE STATUS
Displays information about the extract files that were loaded with LANGUAGE LOAD commands.

�� LANguage STAtus

�

*

;

extract-file-name

��

* Information about all the currently loaded (with LANGUAGE LOAD) language files is displayed.

extract-file-name
Information about the compiles contained in this extract file is displayed.

The LSM Information window containing the LANGUAGE STATUS display is closed if you issue a
LANGUAGE STATUS command without operands and the current display is for the same command
with a null argument.

The LANGUAGE STATUS command is meant primarily for debugging situations, or for verifying that
IDF understood your commands.

Chapter 10. Commands and operating procedures 133

To display the current value of the IDF Language Support settings, use the LANGUAGE OPTIONS
command.

Return codes
0 Operation successful
28 The specified extract file was not loaded with LANGUAGE LOAD.

LANGUAGE STEM
Alters the name of the REXX stemmed variable array which is used to return information to an IDF
macro as a result of all subsequent EXTRACT LANGUAGE commands, as well as a number of other
EXTRACT commands.

�� LANguage STEM
LSM

stem-name
��

LSM
The default value of the REXX stem name.

stem-name
The REXX stem name. It must be between 1 and 8 characters, with the first character alphabetic.

The current LANGUAGE STEM setting can be displayed with the LANGUAGE OPTIONS command, and
retrieved with the EXTRACT LANGUAGE STEM command.

For more information, see Chapter 15, “The EXTRACT command,” on page 223.

Return codes
0 Operation successful
2 Keyword truncated
5 Arguments are invalid

LANGUAGE VERSION
Displays the IDF Language Support version information.

�� LANguage VERsion ��

The information is in the form:
ASMLANG Vn.Rn.nn (generated ccyy.ddd hh:mm)

Return codes
0 Operation successful

134 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LANGUAGE XPATH (CMS and z/OS)
Defines the extract file search path file type (TSO DD name) information.

�� LANguage XPATH

�

ASMLANGX

separator
(1)

extract-file-type

��

Notes:

1 Up to 10 entries can be specified.

ASMLANGX
The default extract file search path.

extract-file-type
The extract file search path.

separator
A comma, blank, or semicolon. Separates extract file types.

The following characters are allowed in XPATH entries:
v A–Z (or a–z)
v @, #, _, $, –, +
v 0–9 (not allowed as first character of an entry)

This information is used to locate extract files for which the extract file type (z/OS DD name) was not
explicitly specified. The XPATH entries are searched in the supplied order.

The LANGUAGE OPTIONS command displays the current XPATH information.

The ability to define the extract file search path gives you full control of the extract file loading process. It
is easy to support the coexistence of many versions of a target program.

Return codes
0 Operation successful
2 Keyword truncated
5 Arguments are invalid

LAST
Displays source code starting at the highest available address.

�� LASt
window

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a Disassembly window, uses the first Disassembly window.

Chapter 10. Commands and operating procedures 135

Return codes
0 Operation successful

LASTMSG
Displays the last two messages issued in the message areas.

�� LASTMsg ��

Return codes
0 Operation successful

LEFT
Scrolls an open window left.

�� LEFt
window number-of-columns

��

window
A window. Select by a Window Specification or by placing the cursor in the window. If omitted and
the cursor is not in a scrollable window, then all scrollable windows are scrolled.

number-of-columns
The number of columns by which the window is to be scrolled. This may be specified as:
v An integer
v An integer prefixed by a +
v An integer prefixed by a -, specifying the number of screen columns by which the window is to be

scrolled to the right.

If omitted, each window to be scrolled is scrolled by the current number of data columns for that
window.

This command is normally only meaningful when a Disassembly window is open. However, you can also
scroll windows made smaller with the SIZE command.

Return codes
0 Operation successful
5 Arguments are invalid
6 Command issued when it has no meaning

136 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LIBE (CMS and z/OS)
Controls the source of the target program which IDF is to load.

�� LIBE file-name ��

file-name
The file to be loaded.

z/VM

v LIBE indicates that the target program should be loaded from an OS-style LOADLIB rather
than from the usual CMS-style MODULE file.

file-name
The file name of the LOADLIB to be used.

If this file name is not present in the list of files declared with the CMS GLOBAL
LOADLIB command, it is added as the first library.

$ Indicates that the LOADLIB was declared through the CMS GLOBAL LOADLIB
command.

z/OS

v LIBE is used to explicitly control the loading of the target Load Module.
v A single parameter is needed. It may be either:

– The DD name of the PDS containing the Load Module.
– $ to indicate that standard OS Load Module search order should be used.

The LIBE command may only be issued from the PROFILE macro, before loading the target program into
storage.

Examples
SET LIBE $
SET LIBE mylib

Chapter 10. Commands and operating procedures 137

LOAD
Loads the target program and associated symbol information into memory.

�� LOAd
MODule
SYMbols File Info

��

File Info:

MAP
cms-fn

ft
fm

pds-member
dd-name

phasename

(MODUle module-name

MODULE
Keyword indicating module-only load.

Only the target module is loaded into storage.

This option may only be used in the PROFILE macro. For more details see “Command restrictions
related to PROFILE execution” on page 204.

SYMBOLS
Keyword indicating symbols-only load. Does not apply to z/OS.

Only the module symbols are loaded into storage. The following parameters provide more
information.

cms-fn
CMS file name

MAP
Default CMS file type

ft CMS file type

fm CMS file mode

pds-member
z/OS PDS member name.

dd-name
z/OS DD name. If omitted, IDF looks in the ISPLLIB or STEPLIB if present. If the LIBE option was
used, then that DD name is used as the default. IDF does not look in LPALIB or the z/OS link list.

phasename
The z/VSE phase map, as generated by ASMLKEDT.

MODULE
Keyword to indicate that a module name is supplied. If not supplied, then symbols are loaded for the
qualified module.

module-name
Module for which symbols are loaded.

138 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If LOAD MODULE or LOAD SYMBOLS is issued by the PROFILE macro, but not both, IDF makes sure
that both functions are performed after the profile completes.

For example, if the PROFILE issues LOAD SYMBOLS but does not issue LOAD MODULE, IDF loads the
module anyway after the profile is completed.

You can stop IDF from loading the module with the MODULE command.

If no parameters are supplied with this command (the command is just “LOAD”) then both the target
module and its associated symbols are loaded into storage. This may only be used in PROFILE macro.
For more details see “Command restrictions related to PROFILE execution” on page 204.

Return codes
0 Target program loaded successfully
Other An error occurred, see “Message numbers and severity levels” on page 263 for return codes.

Notes for LOAD SYMBOLS for CMS

The underlying assumption for the IDF processing which loads symbols is that the symbol information is
found as INVALID CARD images in the LOAD MAP file, interspersed with entrypoint addresses. You
can use the LOAD SYMBOLS command to load symbol information from a TEXT file rather than a
renamed LOAD MAP if you wish, but you have to perform some more setup for this case.

When loading symbol information directly from a TEXT file, you must first load all of the applicable
TEXT files by means of the LOAD SYMBOLS command, then you must issue a SYMBOL command to
define the offset-within-module for each CSECT.

An example profile to perform this kind of operation follows, but you probably want something more
elaborate to prevent retyping the addresses within the profile each time you rebuild the program:

The records in the LOAD MAP file which IDF uses to determine the start addresses of various CSECTs
have the following format (in some cases you may want or need to build the map manually):
Col 1 Blank
Col 2-9

Symbol name (upper case)
Col 10 Blank
Col 11-12

If the symbol marks the start of a CSECT, these columns should contain the characters SD,
otherwise they should be blank.

Col 13 Blank
Col 14-19

The hexadecimal address associated with this symbol.
Col 20-*

Blank

/* load symbols directly from TEXT files */
’LOAD SYMBOLS ASMPARM TEXT’
’LOAD SYMBOLS ASMSCAF TEXT’
’SET SYMBOL (ASMPARM) ASMPARM 00000000 00000000 00000060 E F 01’
’SET SYMBOL (ASMSCAF) ASMSCAF 00000000 00000060 00000400 E F 01’
’SET SYMBOL (ASMSCAF) ASMSUBCM 0000028E 000002EE 00000000 E F 24’

Figure 23. Loading symbols directly from TEXT files

Chapter 10. Commands and operating procedures 139

LOCATE
Locates a string and displays the section of code where it occurs.

��
Locate window -

/ string
/

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted, and the cursor is not in a Disassembly window, uses the first Disassembly window.

- Search direction is up, rather than down.

string
The string to be searched for. Include the trailing delimiter “/” when the string has trailing blanks.

Format is essentially the same as the XEDIT LOCATE command. The search begins at the first source line
shown on the screen; the target code, if found, is displayed at the top of the screen.

Examples
loc /procedure

loc -/end;

l /declare /

/init(

/first use/

-/gobackward

loc =3 /window 3/

Return codes
0 Operation successful
1 Missing search string
6 No extract data files containing source code were loaded with LANGUAGE LOAD.

LOCATION
Sets main storage to the contents of REXX variable MEMAREA.

�� LOCation storage-start-address ��

location-start-address
An expression specifying the storage start address.

If the expression contains an Access Register then the storage that is modified is in the dataspace
identified by the ALET in the referenced Access Register.

140 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The SET LOCATION command lets you modify storage within your program's defined limits. If the
TRACEALL or RISK option is ON, you may be able to modify storage beyond the defined limits.

For more details on your program's defined limits and how to change them, see (for CMS) “Your
program's defined limits” on page 56, (for z/OS) “Your program's defined limits” on page 49 and (for
z/VSE) “Your program's defined limits” on page 62.

Examples
SET LOCATION plist
SET LOCATION 0(R1)
SET LOCATION 0(AR2)

REXX variables read
MEMAREA

New contents of the specified memory area

LOCATION ALET
Sets storage in a dataspace to the contents of REXX variable MEMAREA.

�� LOCation ALEt access-link-entry-token storage-start-address ��

access-link-entry-token
A token identifying the ALET. Must be a one to eight character hexadecimal value.

storage-start-address
An expression resolving to a storage area start address within the dataspace.

You must be in an ESA environment for this command to work.

Examples
SET LOCATION ALET 10003 X’1000’
SET LOCATION ALET 10004 0(R1)

REXX variables
MEMAREA

New contents of the specified memory area

MACRO
Issues an IDF macro.

�� MACro macro-name
macro-parameters

��

macro-name
The name of the macro.

macro-parameters
Arguments for the macro.

Chapter 10. Commands and operating procedures 141

Execute the MACRO command by pressing a PF key, by typing on the command line when the
COMMAND command is invoked, or by issuing as a command from another macro.

Return codes

If the macro is found, its return code is propagated to the caller.

The following return codes are generated by IDF:
-3 Macro not found
1 No macro name specified
2 Macro name exceeds eight characters
5 Arguments to macro exceed 79 characters in length

MAJOR
Enables and disables the display of data for the structure major component.

�� MAJor ON
OFF

��

ON Enables the display of structure major component data.

OFF
Disables the display of structure major component data. This is the initial setting.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

MAP
Displays the location of modules and code sections known to IDF, and the name of any associated extract
file.

�� MAP
window

�

*

;

module-name

��

window
An LSM Information window. Select by a Window Specification or by placing the cursor in the
window. If omitted and the cursor is not in an LSM Information window, uses the first LSM
Information window.

* Displays information for all known modules.

module-name
The module for which information is displayed.

142 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The LSM Information window containing the MAP display is closed if you issue a MAP without
operands and the current display is for the same command with a null argument.

The module and code section entries are built (and possibly associated with an extract file) as part of
processing the LANGUAGE LOAD command, as well as the DISASM command.

The MAP command is meant primarily for debugging situations, or for verifying that IDF understood
your commands.

Return codes
0 Operation successful
28 The specified module was not defined to IDF

MAXIMIZE
Removes a window from the Minimized Windows Viewer and restores it to its previous position on the
display screen.

�� MAXimize
window

��

window
The window to maximize. Select by a Window Specification or by placing the cursor in the window
name token in the Minimized Windows Viewer.

Return codes
0 Operation successful
1 No window selected

MINIMIZE
Removes a window from the IDF display, and places an entry representing the window in the Minimized
Windows Viewer.

�� MINimize
window

��

window
The window to be minimized. Select it by a Window Specification or by placing the cursor in the
window.

Return codes
0 Operation successful
1 No window selected

Chapter 10. Commands and operating procedures 143

MODE (CMS only)
Sets the file mode IDF uses for CMDLOG or MACROLOG and associated playback operations.

�� MODE file-mode ��

file-mode
A CMS file mode specification.

Examples
SET MODE b
SET MODE A2

MODULE
Stops IDF loading an executable file into memory.

�� MODUle ��

MODULE intended for use by user profiles that need to perform unusual program loading. It can only be
issued from an IDF macro or profile.

Examples
MODULE

MODULE
Defines the origin and length of a module that was loaded while the original target program was
executing.

�� MODUle module-name
CDE
NUCext
TRANs

��

module-name
The name of the module that is to have its origin and length defined.

Note: Unless the module is qualified by the QUALIFY command, address expressions that refer to a
dynamically loaded module must prefix any symbols with the module and CSECT wrapped in
parentheses (see “Address expressions” on page 80).

CDE
z/OS only.

144 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Scan the Contents Dictionary Entries (CDEs) in the Job Pack Queue (list of modules loaded for the
current job, the z/OS session) for an entry corresponding to module-name. If no suitable CDE was
found, the search continues with a scan of the Link Pack Dictionary Entries (LPDEs) in the Link Pack
Area (the list of pre-defined and resident modules).

If a matching CDE or LPDE is found, set up a module definition for module-name with appropriate
module start address and length values.

NUCEXT
CMS Only.

Scan the CMS Nucleus Extension Subcommand control block chain and locate an entry for
module-name.

If an entry is found, set up a module definition for module-name with appropriate module start
address and length values.

TRANS
CMS Only.

Check the module-name MODULE file to make sure that it is a transient program (has only 1 record).

If module-name MODULE is a transient program, set up a module definition for module-name with a
module start address of X'0E000' and a module length of X'FFF'.

The second argument is the module search type. It is not needed for z/VSE.

The origin and length are taken from system control blocks.

This command lets you debug many modules at once.

The new module definition is needed before symbols are loaded for modules loaded by the original
target.

Examples
MODULE IDF CDE
MODULE IDFMAIN NUCEXT

MODULE BASE
Sets the origin of a module that was loaded while the original target program was executing.

�� MODUle module-name BASe module-start-address ��

module-name
The name of the module that is to have its origin set.

Note: Unless the module is qualified by the QUALIFY command, address expressions that refer to a
dynamically loaded module must prefix any symbols with the module and CSECT wrapped in
parentheses (see “Address expressions” on page 80).

module-start-address
An expression which resolves to the start address value for module module-name.

This command lets you debug many modules at once.

Chapter 10. Commands and operating procedures 145

The new module definition must be completed with a MODULE SIZE command before symbols are
loaded.

See “BASE” on page 99 for information about how to set the base address of the target program specified
when IDF was invoked.

Examples
MODULE ASMLANGX BASE 0(R0)

MODULE SIZE
Sets the length of a module that was loaded while the original target program was executing.

�� MODUle module-name SIZe module-length ��

module-name
The name of the module that is to have its length set.

Note: Unless the module is qualified by the QUALIFY command, address expressions that refer to a
dynamically loaded module must prefix any symbols with the module and CSECT wrapped in
parentheses (see “Address expressions” on page 80).

module-length
An expression which resolves to the length value for module module-name.

This command lets you debug many modules at once.

The new module definition must be completed with a MODULE BASE command before symbols are
loaded.

Examples
MODULE ASMLANGX SIZE X’123000’
MODULE FDISK SIZE F’1024’

146 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

MOVE
Moves a window to a new location on the screen.

�� MOVe window
ADSTops
AFPR
BREak
DISasm
DUMP
OPTions
OREGs
REGs
SKIPstep
STAtus
LSMinfo

Location ��

Location:

row
+ column
- +

* -
STANdard *
STD STANdard

STD

WINDOW
The window to be moved. Select by a Window Specification, or by placing the cursor in the window.

ADSTOPS
The AdStops window.

AFPR
The Additional Floating-Point Registers window.

BREAK
The Break window.

DISASM
The Disassembly window with the lowest window id.

DUMP
The Dump window with the lowest window id.

OPTIONS
The Options window.

OREGS
The Old Registers window.

REGS
The Current Registers window.

SKIPSTEP
The Skipped Subroutines window.

Chapter 10. Commands and operating procedures 147

STATUS
The Target Status window.

LSMINFO
The LSM Information window with the lowest window id.

row
The screen row to which the window is to be moved.

This may be specified by:
v an integer. This is the screen row for the upper left corner of the window. The screen rows are

numbered from the top. The top row is row 1.
v an integer prefixed by a +. This is the number of screen rows by which the window is moved

down on the screen.
v an integer prefixed by a -. This is the number of screen rows by which the window is moved up

on the screen.
v * The window is kept at the current row. Use this when you want to change the column, but not

the row.
v STANdard | STD. This indicates that the standard window row and column position for this

window type should be used.

If this parameter is omitted, the position of the cursor on the screen is used as the new location of the
upper left corner of the window.

column
The screen column to which the window is moved.

This may be specified as:
v an integer. This is the screen column for the left side of the window. The screen columns are

numbered from the left. The leftmost column is 1.
v an integer prefixed by a +. This is the number of screen columns by which the window is to be

moved to the right on the screen.
v an integer prefixed by a -. This is the number of screen columns by which the window is to be

moved to the left on the screen.
v * The window is kept at the current column. Use this when you want to change the row, but not

the column.
v STANdard | STD. This indicates that the standard window row and column position for this

window type should be used.

If this parameter is omitted, and the row parameter is specified, the current screen column for this
window is maintained.

The MOVE command lets you place open windows in explicit places on the screen. Any window can
overlap any other window. However, none of the windows can overlap the Command window. Also, a
window cannot be placed such that some of the window is off the screen. If you try this, IDF repositions
the window so that all of it stays on the screen.

Examples

v To move the window 03 origin to row 5 and column 20:
MOVE =03 5 20

v To move the window in which the cursor is placed to row 8 and column 1:
MOVE 8 1

v To move the window 01 origin to the current cursor position:
MOVE =01

Return codes

148 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

0 Operation successful
1 Window name or Row location missing
2 Operand longer than eight characters
5 Window name invalid or syntax or other error in expression

MPACK
Returns extract data storage AREAs that do not hold extract data to the operating system free storage
pool.

�� MPAck ��

The MPACK command is meant primarily to help when free storage is at a premium.

Return codes
0 Operation successful
Other Error occurred while packing extract data storage AREAs. This is probably caused by an overlay

of the extract data AREA control information by an errant application program under test.

MRUN
Executes target program instructions until the next event occurs.

�� MRUn ��

The MRUN command is different to RUN, because the target program is executed before control returns
to the issuing macro. When RUN is issued from a macro, it has no immediate effect, being processed after
the macro exits.

After issuing MRUN, the macro can use EXTRACT EVENT to determine what kind of event occurred in
the target program.

z/VM

You should ensure that the MRUN command is issued through the LPSW Fastpath addressing
environment, which is the default environment established when the IDF macro is entered. Using
this interface eliminates any SVC linkages between REXX and IDF, so that IDF can provide
optimum flexibility in what the target program can itself execute under MRUN. “REXX linkage
considerations” on page 208 provides information concerning the available methods for invoking
IDF commands from REXX.

If instead the address ASM environment is used to invoke the MRUN command, REXX uses a
CMSCALL (SVC 204) to invoke the MRUN command. This SVC linkage introduces some
potential problems in the execution of the target program. These are described in “MRUN
invoked through address ASM on CMS” on page 150.

Return codes
0 Operation successful
6 The target program is not yet loaded

Chapter 10. Commands and operating procedures 149

MRUN invoked through address ASM on CMS
If the address ASM environment is used to invoke the MRUN command (or MSTEP, or any other
command which causes immediate execution of the target program) on CMS, then REXX uses a
CMSCALL (SVC 204) to invoke the MRUN command. This SVC linkage introduces some potential
problems in the execution of the target program:
1. If the target program obtains GETMAIN storage during execution under the MRUN command, that

storage may be implicitly FREEMAIN'ed again, without warning. This occurs because of the default
CMS setting of STORECLR ENDSVC, and the fact that a CMSCALL/CMSRET pair was used in the
REXX linkage to the MRUN. CMS is working as designed by implicitly freeing any GETMAIN storage
that was obtained between the CMSCALL and CMSRET. This can of course lead to unpredictable
behavior of the program's further execution.
The implicit FREEMAIN can be avoided by a CMS SET STORECLR ENDCMD setting, but this in turn
introduces another consideration of its own: CMS then honors any STRINIT request. Any MODULE
file that is generated with the STR option causes a STRINIT request when that MODULE is executed.
So switching to STORECLR ENDCMD is not a good solution. It is best to leave the default
STORECLR ENDSVC. (IDF does not itself alter the current STORECLR setting.) The only complete
solution is to make sure that the LPSW Fastpath linkage is used to invoke the MRUN command.

2. If the target program does a CMSCALL to another program, and an event occurs to signal completion
of the MRUN, then CMSCALL synchronization is destroyed by IDF's attempt to CMSRET back to
REXX to complete the MRUN. CMS treats each CMSRET as being paired to the most recent
CMSCALL. The most recent CMSCALL in the above scenario is the one from the target program
execution. So instead of returning to the MRUN within REXX as intended, this CMSRET actually
returns to the next instruction after the target program's CMSCALL.
IDF cannot compensate for this CMSCALL/CMSRET linkage problem. All it can do is to detect when
it is about to happen. This is done by recording the current SVC nesting depth at entry to its address
ASM command handling, and checking that the nesting is the same just before it returns from that
command handling. If not, another SVC depth was created (or destroyed) while executing the target
program, and CMS is hopelessly confused if IDF returns. So instead IDF issues a series of messages
about the situation, telling you to consult this section of the documentation for details. A re-IPL of
CMS is needed afterwards.
Exactly the same situation occurs when using LINK or SVC 202 linkage to another program instead of
CMSCALL. Again, IDF detects a change in the CMS SVC nesting depth, issues its messages, and
needs a re-IPL.

3. If the target program does a DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER which
does not specify the NOSTACK option, and an event occurs to signal completion of the MRUN before
the corresponding DMSKEY RESET in the target program, then a CMS ABEND occurs, since the
change of key appears to have occurred from within IDF and is not restored before returning to the
calling function, in this case REXX.

These considerations apply only to an address ASM invocation on CMS. They are of no concern if you
use the default LPSW Fastpath interface to invoke the command. With no SVC linkage used in that path,
each of these potential problems is bypassed.

MSG
Places text in the next available Command window message display line.

�� MSG message-text ��

150 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

message-text
The message text.

If all message display lines are occupied, the current messages scroll up and the new message appears in
the bottom display line.

Examples
SET MSG This is a message

MSGID (CMS and z/OS)
Controls the display of the message identifier.

�� MSGId ON
OFF

��

ON The message identifier is displayed.

OFF
The message identifier is not displayed.

The initial setting is based on the execution environment and z/OS or OS runtime settings:
v Under CMS, the messages respect the CMS EMSG setting:

ON The MSGID option is initially ON
TEXT The MSGID option is initially OFF
OFF The MSGID option is initially ON

v Under TSO, the messages respect the TSO MSGID setting:
MSGID

The MSGID option is initially ON
NOMSGID

The MSGID option is initially OFF
v Under z/VSE, the MSGID option is always ON.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

MSGMODE
Controls the display of messages during macro execution.

�� MSGMode ON
OFF

��

ON Enable the display of all messages.

This is the initial setting.

Chapter 10. Commands and operating procedures 151

OFF
Disable the display of specific messages.

The message filtering is dependent on the message severity level. Only I (Informational), W
(Warning) and E (Error) messages are suppressed by MSGMODE OFF. All other types of messages
are not affected.

When some IDF commands are issued through PF keys, or a command typed on the Command window
command line, appropriate status and informational messages are displayed.

During the execution of a macro, these messages may become rather lengthy, hence this command to give
you control.

When macro execution is complete, the MSGMODE setting is returned to the default ON value.

The most recent 10 messages, including those suppressed by MSGMODE OFF, may be retrieved with the
EXTRACT LASTMSG command. See “LASTMSG” on page 236 for details.

The QUIETLY prefix command may be used to override the current MSGMODE setting, and suppress
messages (as if MSGMODE was OFF) for the invocation of a single command. See “QUIETLY” on page
166 for details.

Examples

Since this is one of the settings which is saved in the status stack, a useful sequence within a macro is:
’PRESERVE’ /* Save current settings in stack */
’MSGMODE OFF’ /* No messages displayed */

...
/* Quietly perform macro functions */

’RESTORE’ /* Restore settings, including MSGMODE */

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

MSTATUS
Opens or closes (toggles) the MStatus window.

�� MSTAtus ��

This window displays information about the storage used to contain the extract data information that
was loaded with LANGUAGE LOAD commands. This includes:
v number of compile areas
v extract data storage consumption (total, direct, pooled)
v extract data storage pool utilization, including the number of AREAs in the pool which are unused

The MSTATUS command helps when free storage is at a premium.

152 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

When extract data file information is removed from storage with LANGUAGE DROP, the storage AREAs
that held the extract data are kept for use by later LANGUAGE LOAD commands. The MPACK
command returns storage AREAs that no longer hold extract data back to the operating system free
storage pool.

Return codes
0 Operation successful

MSTEP
Executes the next target program instruction.

�� MSTep ��

The MSTEP command is different to STEP because the target program is executed before control returns to
the issuing macro. When STEP is issued from a macro, it has no immediate effect, being processed after
the macro exits.

After issuing MSTEP, the macro can use EXTRACT EVENT to determine what kind of event occurred in
the target program. In general this indicates that a STEP has occurred, but it may also indicate some
other condition (for example, a program check).

z/VM You should ensure that the MSTEP command is issued through the LPSW Fastpath addressing
environment, which is the default environment established when the IDF macro is entered. Using
this interface eliminates any SVC linkages between REXX and IDF, so that IDF can provide
optimum flexibility in what the target program can itself execute under MSTEP. See the usage
notes under “MRUN” on page 149 for further details.
1. If you have subroutines within the program which you do not want to single-step through,

use the SKIPSTEP command. The SKIPSTEP command causes IDF to skip single stepping
when it comes to a subroutine call to a subroutine that was added to the list of subroutines
being skipped. For the purposes of single-stepping, the skipped subroutine is treated as one
instruction, the subroutine call instruction itself. If a breakpoint or a watchpoint whose
condition is true is placed within the execution path of the subroutine being skipped,
execution stops at that breakpoint or watchpoint.

2. If the STOPNOP option is OFF or the NOSTOPNP option is ON, then IDF does not stop on
NOP and NOPR instructions that follow BAL, BALR, BAS, and BASR instructions.

Return codes
0 Operation successful
6 The target program is not yet loaded

Chapter 10. Commands and operating procedures 153

NAMES
Display the names of all variables that match a particular pattern and are eligible for display.

�� NAMes
window

�

;

variable-name-pattern

��

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in an LSM Information window, uses or opens the first LSM
Information window.

variable-name-pattern
A variable name matching pattern.

If this parameter is not supplied, then the names of all variables which are eligible for display are
shown. Supplied variable name matching patterns define a subset of the eligible names. A variable
name is displayed if it matches one variable pattern name.

The variable name matching pattern rules are:
v ? matches a single variable name character
v % matches zero or more variable name characters
v other characters represent themselves
v the search is not case sensitive

The variable name information display persists until:
v A NAMES command without arguments is issued
v The window is closed with a CLOSE command.
v Another IDF Language command such as VARIABLE, STRUCTURE, ARRAY, TYPE, CALLERS,

PLOCATES, LANGUAGE STATUS, or MAP is issued. These commands update the LSM Information
window with new information

v The target program completes execution
v Target program execution progresses beyond the variable's defined scope

Examples

If name
lists:

301char
ab30xcc
aptr
bptr001
ctra
ctrd
i
ii
mstidx
slvidx
title

Then NAME
lists:

154 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

aptr
bptr001

and NAME
lists:

301char
ab30xcc

and NAME
lists:

ctra
ctrd
i
mstidx
slvidx

NEXT
Scrolls windows forward.

�� NEXt
Down window

��

window
The window to be scrolled. Select by a Window Specification or by placing the cursor in the window.
If omitted and the cursor is not in a scrollable window, then all open scrollable windows are scrolled.

If the HISTORY command was executed, this command has an alternate meaning, see “HISTORY” on
page 125 for explanation.

This command works only on a scrollable window, which is any window made smaller with the SIZE
command, or an open:
v Break window
v Dump window
v Disassembly window
v LSM Information window
v Options window
v Skipped Subroutines window
v Target Status window

Return codes
0 Operation successful
6 Command issued when it has no meaning

OFFSET
Sets or queries the current offset value.

�� OFFSet
address

��

Chapter 10. Commands and operating procedures 155

address
The new value of the offset.

If not provided, displays the current value of the offset.

The OFFSET option must be ON to obtain a window display that shows dump or disassembly addresses
in terms of the offset.

For information about specifying arguments in terms of the offset, see “Address expressions” on page 80.
Arguments may be specified in terms of the offset regardless of the setting of the OFFSET option.

The initial value of the offset is the same as the program's base address (origin in memory).

If an address is provided as part of a command issued by a macro, that address is used in preference to
any data typed on the screen.

See also “SET OFFSET” on page 177.

Return codes
0 Operation successful
5 Syntax or other error in expression
6 Command issued when it has no meaning

OPEN
Opens a Disassembly window, a Dump window, or an LSM Information window.

�� OPEn ARRay
CALlers
DISasm
DUMP
LANguage
MAP
STRucture
TYPe
UNIon
VARiable

command-parameters ��

ARRAY
Open an LSM Information window with an array element display.

CALLERS
Open an LSM Information window with a program call hierarchy display.

DISASM
Open a Disassembly window.

DUMP
Open a Dump window.

LANGUAGE
Open an LSM Information window with a display from a LANGUAGE command.

MAP
Open an LSM Information window with a program map display.

156 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

STRUCTURE
Open an LSM Information window with a structure component display.

TYPE
Open an LSM Information window with a variable type attribute display.

UNION
Is a synonym for STRUCTURE.

VARIABLE
Open an LSM Information window with a variable display.

command-parameters
Parameters for the window. The format of this argument depends on the type of the window being
opened:
v If a Disassembly window is being opened, the second argument is the address at which the

disassembly listing is to begin. For more information about how to specify this address see
“DISASM” on page 111.

v If a Dump window is being opened, the second argument is the address at which the storage
dump is to begin. For more information about how to specify this address see “DUMP” on page
113.

v If an LSM Information window is being opened for ARRAY, CALLERS, MAP, STRUCTURE, TYPE,
or VARIABLE display, the remaining arguments are processed by the command as appropriate to
generate the new display.

v If an LSM Information window is being opened for a LANGUAGE command display, the second
argument is that needed by the LANGUAGE command. This window is closed if the command
does not generate anything to display.

The OPEN command lets you have more than one of these types of window open, letting you view
many non-contiguous areas of storage at once.

Return codes
0 Operation successful
1 Window type missing
2 Window type too long
5 Window type invalid
6 Too many windows open

OPTIONS
Toggles the display of the options window.

�� OPTions ��

Chapter 10. Commands and operating procedures 157

ORDER
Moves a window to the top of the screen.

�� ORDer
window

��

window
The window that is moved. Select by a Window Specification or by placing the cursor in the window.

Return codes
0 Operation successful
1 No window selected.

OREGS
Opens or closes (toggles) the Old Registers window which contains a display of the registers and PSW as
they were the last time IDF had control.

�� OREGs ��

If the CREGS command or the AREGS command was issued, the control registers or the access registers
as of the last time IDF was in control are displayed. If the target has not executed any instructions the
window is blank.

Return codes
0 Operation successful

PACKED
Sets or queries the format in which the data for packed decimal variables are displayed.

�� PACked
DECimal
*
HEX

��

DECIMAL
Packed decimal variables are displayed in decimal. This is the initial value.

* The same as DECIMAL.

HEX
Packed decimal variables are displayed in hexadecimal.

158 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If the display format setting is not specified, the current display format for packed decimal variables is
shown in a message.

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid packed decimal variable display format

PARMS
Displays the Parameter List for Callable Blocks.

�� PARms
window

�

;

module-name ��

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in an LSM Information window, uses or opens the first LSM
Information window.

module-name
A Callable Block name.

The Parameter List is shown as a list of parameter variable names.

Return codes
0 Operation successful
5 Arguments are invalid
6 No extract data files containing source code were loaded with LANGUAGE LOAD.

PAUSE
Delays the execution of IDF (and thus of the target program).

�� PAUSe
delay

��

delay
The number of hundredths of seconds to pause. An integer from 0 to 99999999. If omitted, a pause of
0.25 seconds is assumed.

Return codes
0 Operation successful

Chapter 10. Commands and operating procedures 159

PER (CMS only)
Enables and disables the exploitation by IDF of Program Event Recorder (PER) functions.

�� PER Y
N

��

Y Enable PER exploitation. Break window displays PER=Y.

N Disable PER exploitation. Break window displays PER=N.

Examples
SET PER Y
SET PER N

PFK
Assigns a command or macro invocation to a PF key.

�� PFK pfkey-number command-string ��

pfkey-number
An integer identifying the PF key. Has a value from 0 to 24. 0 is the ENTER key.

command-string
The PF key command text. This has a maximum of 40 characters.

Examples
PFK 1 SUBSET
PFK 10 ADSTOP
PFK 0 MACRO MYENTER

When you press the PF key, the command that you entered against the key is executed. Parameters typed
on the command line may be used as parameters for the command.

If you want a PF key to invoke a macro, you must use the MACRO command in the text assigned to the
PF key.

PFKDISP
Adjusts the display of PF key settings at the bottom of the screen in the Command window.

�� PFKDISP ALL
ON
OFF

��

160 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ALL
Display settings of PF keys 1 to 24.

OFF
Display no PF key settings.

ON Display settings of PF keys 1 to 12.

The size of the Command window varies depending on the number of PF key settings displayed.

PLOCATES
Displays the variables that may be located with a given locator (pointer) variable.

�� PLOcates
window

�

;

variable-name

��

The PLOCATES command determines the variables which may be located with a given locator (pointer)
variable, and displays an entry for each in the LSM Information window.

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in a LSM Information window, uses or opens the first LSM
Information window.

variable-name
A variable name.

Only the variable name is relevant in determining the located variables. Extra information such as:
v Locating expressions for based variables
v array index values
v substring ranges

is not needed, and should not be specified.

The Pointer Locates information display persists until:
v A PLOCATES command without arguments is issued.
v The window is closed with a CLOSE command.
v Another IDF Language command such as VARIABLE, STRUCTURE, ARRAY, TYPE, CALLERS,

LANGUAGE STATUS, or MAP is issued. These commands update the LSM Information window with
new information.

v The target program completes execution.
v Target program execution progresses beyond the variable's defined scope.

Examples
ploc base@
ploc DSA_ptr
plocates ptr1;ptr2

Chapter 10. Commands and operating procedures 161

PRESERVE
Saves the current value of the IDF settings in a 32 element stack.

�� PREServe
SAVe

��

If the IDF settings stack is full, the last stack element is replaced. Use the RESTORE command (see
“RESTORE” on page 169) to restore the settings.

This command is intended for use within IDF macros, as it lets you save the current values of IDF
settings, then change them for the duration of the macro, then restore them to their values before the
macro was run.

Return codes
0 Operation successful

PREVIOUS
Scrolls a window backwards.

�� PREvious
Up window

��

window
The window to be scrolled. Select it by a Window Specification or by placing the cursor in the
window. If omitted and the cursor is not in a scrollable window, then all scrollable windows are
scrolled.

This command has an alternative meaning after the HISTORY command is executed. See “HISTORY” on
page 125 for further information.

This command works only on a scrollable window, which is any window made smaller with the SIZE
command, or one of the following:
v Break window
v Dump window
v Disassembly window
v LSM Information window
v Options window
v Skipped Subroutines window
v Target Status window

Whenever you use the NEXT command, IDF records information about the windows that are displayed
on the screen in a page buffer. This page buffer holds information for about forty windows. When you
use the PREVIOUS command, IDF attempts to determine the proper starting address for the previous
display page by examining the page buffer. If you page forward, then page back, the starting location on
the first page should be the same as on its previous display. If you page forward beyond the limits of the
page buffer, information about the oldest pages is lost. If you open or close windows, the information in
the page buffer may no longer be correct and scrolling may be erratic.

162 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If IDF is unable to obtain information from the page buffer, the number of bytes that are displayed in the
window is subtracted from the address of the first byte displayed. Unless the display shown is an
unformatted dump, this is an imprecise amount. Paging backward and then paging forward does not
necessarily display the original location.

Return codes
0 Operation successful
6 Command issued when it has no meaning

PROGCHK (CMS only)
Simulates a program check to the target program, typically to test the target program's recovery from
program checks (for example, through an established ESPIE or ESTAE or ABNEXIT or PSW steal).

�� PROGck
PROGchk

check-code ��

check-code
The program check code to be simulated. An integer, with the following possible values:
1 Operation exception
2 Privileged operation exception
3 Execute exception
4 Protection exception
5 Addressing exception
6 Specification Exception
7 Data exception
8 Fixed-point overflow exception
9 Fixed-point divide exception
10 Decimal overflow exception
11 Decimal divide exception
12 Exponent overflow exception
13 Exponent underflow exception
14 Significance exception
15 Floating-point divide exception

The program check is simulated with the current GPRs, FPRs, ARs, CREGS, and PSW.

As this command is intended to simulate an error and drive an error handler, that handler may be
expecting some other conditions that must be set up before this command is issued. If necessary, you
must first change these values before issuing the PROGCK command.

Return codes
0 Operation successful

PROGCK (CMS only)
The PROGCK command is a synonym of the PROGCHK command. For details, see “PROGCHK (CMS
only).”

PSW
The PSW command is a synonym of the GOTO command. For details, see “GOTO” on page 122.

Chapter 10. Commands and operating procedures 163

PSWSTEAL (CMS only)
Declares a target program instruction that steals the SVC or PGM new PSW.

�� PSWSTEAL address ��

address
The storage location. If an expression is present on the command line, that expression is used as the
argument. If the command line is empty, an attempt is made to determine the address from the
cursor position.

The PSWSTEAL command effectively sets a permanent breakpoint at the specified location. Whenever
that instruction is executed, IDF performs an interpretive execution of the instruction. It appears to the
target program that it has stolen the new PSW. However, IDF retains control of the PSW locations.

To guarantee correct results, you must declare all occurrences of the following:
v All references (both store and fetch) to either SVC or PGM New.
v All store references to SVC or PGM Old.
v All store references to locations 136-159 (interrupt information)

The following instructions are supported for interpretive execution through the PSWSTEAL command,
and are therefore its only valid targets:
MVC Move characters
STM Store multiple
LM Load multiple
ST Store
L Load

The maximum number of PSWSTEAL breakpoints that may be active at any time is 75. These are not
shown on the Break window, but may be obtained by means of the EXTRACT BREAK command.

If the PSWSTEAL command is issued against an instruction that is already declared, the PSWSTEAL
breakpoint is cleared. The PSWSTEAL command toggles these special breakpoints.

A normal breakpoint may be set at the same instruction location as a PSWSTEAL breakpoint. When
execution reaches the normal breakpoint, you are notified as usual. When execution passes through the
PSWSTEAL breakpoint, no notification is performed, just as no notification is performed if the instruction
is executed normally. Once set, the PSWSTEAL breakpoints may be forgotten.

Instructions which are the target of PSWSTEAL commands must reside in read/write storage.

When you issue the PSWSTEAL command, IDF exploitation of PER is locked out for the remainder of the
debugging session. This does not affect the program in terms of its ability to use PER.

When the new PSW locations in low storage are displayed on a Dump window, the values the program
placed in them are visible. However if you use EXTRACT LOCATION to obtain this information, IDF's
PSWs are returned.

This facility enables you to use IDF to single-step through every instruction of the program's first level
interrupt handler.

As a matter of convenience, the following is suggested:

164 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

v Define all instructions in the program that must be declared with PSWSTEAL as external symbols with
a common prefix, for example, PSWnnnn

v Insert code in the PROFILE macro to read the program's MAP file, locate the external symbols, and set
the PSWSTEAL breakpoints. For example:
/*---*/
/* Read pgm MAP file into MAPREC.n array */
/*---*/
fid = pgm ’MAP *’
Address Command ’EXECIO * DISKR’ fid ’(FINIS STEM MAPREC.’
If rc ¬= 0 Then

Do
’SET MSG2 Return code’ rc ’trying to read ’fid’’
’SET ALARM’
Exit

End

/*---*/
/* Establish PSWSTEALs using information from MAP file */
/*---*/
PSWsteals = 0
Do i = 1 To maprec.0

Parse Upper Var maprec.i label .
If Substr(label,1,3) ¬= ’PSW’ Then Iterate
’PSWSTEAL’ label
If RC ¬= 0 Then

Do
’SET MSG2 Error on PSWSTEAL’ label’ after’ ,

PSWsteals ’successful, RC=’RC
’SET ALARM’
Exit

End
PSWsteals = PSWsteals + 1

End

This makes the fact that you are stealing PSWs transparent as far as your operational procedures are
concerned.

Return codes
0 Operation successful
1 No address specified
5 Syntax or other error in expression, or unsupported instruction
6 Module not yet loaded, or maximum number of PSWSTEALs already set

QUALIFY
Sets the name of the module that is used with some commands and addresses when no explicit module
name is supplied.

�� QUAlify default-module-name ��

default-module-name
The name of the new default module.

Examples
SET QUALIFY ASMLANGX

Chapter 10. Commands and operating procedures 165

QQUIT
The QQUIT command is a synonym of the QUIT command. For details, see “QUIT” on page 167.

QUIET
Controls the display of informational messages.

�� QUIET ON
OFF

��

ON Informational messages are displayed.

OFF
Informational messages are not displayed.

QUIETLY
Temporarily suppresses the display of I (Informational), W (Warning) and E (Error) messages during the
execution of the specified command.

�� QUIETLY command-name command-parameters ��

command-name
The command that is being executed.

command-parameters
The parameters needed by this command.

The QUIETLY prefix command overrides the current MSGMODE setting, and suppresses messages (as if
MSGMODE was OFF). It does not affect the actual value of the MSGMODE setting.

See “MSGMODE” on page 151 for more details about message suppression.

If an IDF message that normally rings the terminal alarm is issued under QUIETLY, the alarm is also
suppressed.

Return codes
0 Operation successful
1 No command specified
2 Command name truncated
3 Command unknown
Other Return code from the command

166 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

QUIT
Quits IDF.

�� QUIT
QQUIT

��

If the QUIT command is issued from a PF key, it must be issued twice (press the key twice) to quit.

If the QUIT command is issued from the command line through a PF key that is set to COMMAND, IDF
exits immediately.

If the QUIT command is issued by a macro, it must be issued twice to make IDF exit. In this case, IDF
does not exit until the macro stops.

Return codes
0 Operation successful

RCQUIT
Quits IDF with a specific return code.

�� RCQuit
return-code

��

return-code
The return code. This must be a valid IDF expression. If omitted, the command line is checked for an
expression and if a valid expression is found its value is used as the return code. If omitted and the
command line is empty, the current content of the target program's R15 is used as the return code.

Intended for use by macros, but can also be issued from the command line if desired.

Return codes

If an invalid expression is provided, either as part of the command or on the command line, RC=5 is
returned to the invoking macro and processing is ended.

If the RCQUIT command completes successfully, a return code of 0 is passed to the issuing macro. When
the macro exits, IDF returns to CMS, z/OS, or z/VSE and passes the specified return code.

Chapter 10. Commands and operating procedures 167

REFRESH
Forces IDF to rebuild the IDF user interface screen image, and optionally rewrite it to the terminal.

�� REFresh
DISP

NODISP
��

DISP
Rebuilds the screen image, and writes it to the terminal.

This is useful if a macro wishes to update the IDF user interface display, but continue running.
Normally the rebuild and screen update does not occur until the macro completes execution.

NODISP
Rebuilds the screen image, but does not write the updated image to the terminal.

This is useful if a macro has issued a command which causes an update of the IDF user interface
display, and needs to issue EXTRACT commands for the new display image. Eliminating the extra
terminal update speeds up the execution of the macro.

This facility can even be used to hide the update by immediately issuing more commands to restore
the user interface display to the previous configuration.

The REFRESH command can also be used to restore the IDF user interface display. This is normally only
needed in a macro that sends line mode output to the screen, and should only be needed on TSO.

Return codes
0 Operation successful

REGS
Opens or closes (toggles) the Current Registers window which contains a display of the registers and
PSW or the current contents of the control registers or the access registers.

�� REGs ��

Return codes
0 Operation successful

REGS64 (z/OS only)
Toggles the display of the Current Registers and Old Registers windows, from displaying the 32-bit
General Purpose Register and PSW to 64-bit Registers and PSW.

�� REGS64 ��

168 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If the Current Registers window is not open the window is opened.

Return codes
0 Operation successful

REGSTOPS (CMS only)
The REGSTOPS command is a synonym of the ADSTOPS command. For details, see “ADSTOPS (CMS
only)” on page 95.

RESTORE
Restores the IDF settings from the 32 element stack.

�� REStore ��

If the IDF settings stack is empty, the current setting values are maintained.

This command is intended for use within IDF macros, as it lets you restore the IDF settings to the state
that they held when the last PRESERVE or SAVE command was issued.

Return codes
0 Operation successful

RETRIEVE
Places the previous command on the command line.

�� RETRieve
?

��

IDF maintains the last 30 inputs in a circular buffer. The RETRIEVE function shifts the most recent of
these into the command line.

Return codes
0 Operation successful

RIGHT
Scrolls a window to the right.

�� RIGHt
window number-of-columns

��

Chapter 10. Commands and operating procedures 169

window
A scrollable window. Select by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a scrollable window, then all open scrollable windows are scrolled.

number-of-columns
The number of columns by which the window is scrolled.

This can be specified as:
v an integer
v an integer prefixed by a +
v an integer prefixed by a -, specifying the number of screen columns by which the window is to be

scrolled to the left.

If this parameter is omitted, each window being scrolled is scrolled by the current number of data
columns for that window.

This command is normally only meaningful when a Disassembly window is open. However, any window
made smaller with the SIZE command can also be scrolled.

Return codes
0 Operation successful
5 Arguments are invalid
6 Command issued when it has no meaning

RLOG
The RLOG command (Repeat from Log) controls the execution of IDF commands stored in the command
log.

�� RLog
search-string
$

��

search-string
The text of a search string. All commands in the log file, up to and including the first command
which begins with the specified search argument, are executed. This search is case insensitive.

By providing an argument not in the log file, for example, eof, you can execute all commands in the
log.

$ RLOG first executes anything on the command line, then retrieves the next command from the log
and places it on the command line. Thus by repeatedly pressing the PF key, you can step through as
many commands as you like, previewing (and optionally modifying) them before they are executed.

When issued with no arguments, the next command is retrieved from the log file and placed on the
command line. You can then press ENTER to execute it, or clear the command line as you choose. By
clearing the command line, you skip executing the command.

You can get a similar result by specifying the RLOG option at invocation. When specified at invocation,
RLOG means:
1. Repeat all commands in the log, and
2. Start logging any new commands issued.

170 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If you are executing many commands from the log file, any command which has a nonzero return code
or sets the alarm, stops the RLOG operation.

For more details on command logging support, see “Command record and playback features” on page
80.

RUN
Begins execution of the target program and runs to the next unusual event (such as a breakpoint,
program check, or completion).

�� RUN ��

If the RUN command is issued by a macro, it does not take effect until the macro exits.

The MRUN command performs a similar function. It executes target instructions before returning control
to the invoking macro.

Return codes
0 Operation successful

RUNEXIT
Executes the exit routine, passing it the single argument PFKEY.

�� RUNExit ��

For more information, see Chapter 13, “The IDF exit routine,” on page 213.

Return codes
0 Exit routine executed
6 Exit routine not found

R0-R15
Evaluates the expression provided and places it in the indicated General Purpose Register.

�� Rn expression ��

expression
The expression to be evaluated. Can also be set from the cursor position.

There are 16 separate commands, named R0, R1, ... R15. They all have the same arguments and function,
and differ only in which GPR is changed.

Chapter 10. Commands and operating procedures 171

Return codes
0 Operation successful
1 No address specified
5 Syntax or other error in expression
6 Conditions do not permit completion of command

SALIMIT
Sets the maximum depth of the CALLERS display.

�� SALimit max-caller-display-depth ��

max-caller-display-depth
The maximum depth of the CALLERS display. Integer from 1 to 999999.

The initial value is 100.

This is intended to prevent problems when the program call chain is damaged, or is of unexpected depth
(due to runaway recursion).

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
5 Arguments are invalid

SAREGS
Toggles the display of Save Area header and register information when the CALLERS command is
displaying information about each generation of the program caller hierarchy.

�� SARegs ON
OFF

��

ON Enable the display of the Save Area header and registers.

OFF
Disable the display of the Save Area header and registers.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

SAVE
The SAVE command is a synonym of the PRESERVE command. For details see “PRESERVE” on page
162.

172 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SEARCH
Searches for a string in storage.

�� SEArch
window

string ��

window
A Dump window or Disassembly window. Select by a Window Specification or by placing the cursor
in the window. If omitted, the search begins at the first location that is displayed. If both a Dump
window and a Disassembly window are open, but show different storage areas, it is not clear where
the search should begin, and an error message is issued.

string
The string for which IDF is to search.

Search arguments may be specified in either hexadecimal or character form. Hexadecimal search
arguments must contain an even number of hex digits. An apostrophe in a character argument is
represented by two successive apostrophes.

Examples of valid search arguments are:
X’0741fe3022’
C’The quick brown fox’
C’The dog’’s feet are’

This function is only valid when a Dump window or a Disassembly window is open.

When the search argument is located, it becomes the first location displayed in the selected window or in
the first Disassembly window or Dump window.

Repeat the command to continue searching the remainder of virtual storage.

If the search argument is not found within the target program, a message is issued.

Return codes
0 Operation successful
5 Search argument missing or invalid
6 Not valid in current display mode, unable to determine start address for search, or target not

found

SELFNUCX (CMS only)

�� SELFNucx SYMbol symbol-name
VALue start-offset-value

��

Lets the PROFILE macro control the start offset of the code that is relocated by a self-loading CMS
Nucleus extension.

symbol-name
A symbol that defines the start of the relocated code.

Chapter 10. Commands and operating procedures 173

start-offset-value
An expression that resolves to the start offset value.

This only applies to the target program specified when IDF was invoked.

SELFNUCX SYMBOL may only be issued within the PROFILE macro before the target program is loaded
into memory. If it is issued after that point, RC=6 results.

SELFNUCX VALUE may be issued within the PROFILE macro, and may also be used later to let you (or
IDF macros) redefine this offset after the target program is loaded.

When debugging a self-loading nucleus extension, it should be possible to invoke IDF to debug the
program as a standard user-area or transient module, and trace through the self-loading code. After the
code is relocated, use the BASE and SELFNUCX VALUE commands to follow the relocated code to its
new location. Symbol resolution is automatic, determined by the program base address, symbol value,
and SELFNUCX offset.

Examples
SELFNUCX SYMBOL FREEGO
SELFNUCX VALUE X’44’

SET ADSTOP (CMS only)
Sets or clears one end of an ADSTOP range.

�� SET ADSTop ON
OFF expression

��

ON Set one end of an ADSTOP range.

OFF
Clear one end of an ADSTOP range.

expression
An expression resolving to the address for the end of the ADSTOP range.

See also “ADSTOPS (CMS only)” on page 95.

Examples
SET ADSTOP ON ALLOPEN+4
SET ADSTOP OFF X’200E4’

SET AREG
Changes the contents of an Access Register (AR).

�� SET AREG access-register-number expression ��

access-register-number
The Access Register number; an integer from 0 to 15.

174 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

expression
The new value for the Access Register.

You must be in an ESA environment for this command to work.

Examples
SET AREG 2 X’00010004’

SET BREAK
Sets or clears a breakpoint at an address.

�� SET BREak ON
OFF address

� | command

��

ON Set the breakpoint.

OFF
Clear the breakpoint.

address
The address at which the breakpoint is set. If an expression, the expression is used to provide the
address.

If omitted, the address is determined from the cursor position. If it is not possible to determine an
address from the cursor position (for example, when the cursor is on the command line and the
command line is empty), then an error.

command
A command that is executed when the breakpoint is taken, before control is returned to the user.
Many commands can be specified at the end of the SET BREAK command, separated from the
address and each other by a vertical bar (|). If a command receives a non-zero return code, the
remaining commands in the list are not executed.

See also “BREAK” on page 100.

Examples
SET BREAK ON ALLOPEN+8
SET BREAK OFF 4(R2)
SET BREAK ON MOON | SET MSG Houston... the Eagle has landed.

SET COMMAND
Places text on the command line.

�� SET COMmand text ��

text
The text to be placed on the command line.

Chapter 10. Commands and operating procedures 175

Examples
SET COMMAND Press VALUE to see it yell about this expression

SET EXITEXEC
Names the current IDF exit routine (exec).

�� SET EXItexec
EXIT

IDF-exit-exec
��

EXIT
Default name of IDF exit routine.

IDF-exit_exec
The name of the current IDF exit routine.

For more information, see Chapter 13, “The IDF exit routine,” on page 213.

Examples
SET EXITEXEC STUFF

SET GLOBAL STEM
Writes the data in the specified REXX stemmed arrays to the same named Global Storage stems.

�� SET GLObal � stem-name. ��

stem-name.
A REXX stemmed array name. Must have a terminating period.

Each REXX stemmed array must be in standard EXECIO READ/WRITE stem format.

Any existing Global Storage stem by the same name is dropped before the REXX stemmed array is
inspected.

If the stemname.0 item is not a positive integer, an error message is issued. The new Global Storage stem
is not created.

If a REXX stemmed array element is omitted, an error message is issued. The new Global Storage stem is
not created.

REXX stemmed array elements with null values are supported.

If a REXX stemmed array element is longer than 4,096 bytes, an error message is issued. The new Global
Storage stem is not created.

Examples

176 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SET GLOBAL ptr-array.
SET GLOBAL data.buf1.stem.

REXX variables read
stemname.0

Number of items in the stemmed array
stemname.n

Information for the stemmed array element

SET GLOBAL TEXT
Saves the value of the IDF global area. Other macros can then access it, by using the EXTRACT GLOBAL
command.

�� SET GLOBAL global-text ��

global-text
The new global text value, up eighty characters in length.

Do not end the first blank-delimited word of the new global text value with a period (.), as this is a SET
GLOBAL STEM command.

Examples
SET GLOBAL state3

SET ICOUNT
Sets the count of instructions executed to a specified value.

�� SET ICOunt instruction-count ��

instruction-count
An expression which is resolved to the new instruction count value.

Valid only when the PATH option is set.

Examples
SET ICOUNT 0

SET OFFSET
Toggles the display of addresses using offsets.

�� SET OFFSet ON
OFF

��

Chapter 10. Commands and operating procedures 177

ON Enables the display of addresses using offsets.

OFF
Disables the display of addresses using offsets.

SET OPTION
Sets an IDF option ON or OFF.

�� SET OPTION ON option
OFF

(1)
option ON

SET OFF

��

Notes:

1 This alternative form may be used only when it does not conflict with other command names.

option
The IDF option name.

The IDF options control the environment of IDF, which in turn controls the way IDF works, and the
information you see on the screen.

Most options can be controlled through the SET OPTION command. Many of these options can also be
specified at the invocation of IDF, either as parameters to the ASMIDF call, or as items in the PROFILE
macro. The restrictions that apply to options specified in a PROFILE macro are set out in “Command
restrictions related to PROFILE execution” on page 204.

Some options are invocation options only, and cannot be controlled after invocation with the SET
OPTION command. The information provided by these options must be available at invocation. It makes
no sense for it to be provided later.

Some options are controlled by a command of the same name. Some of these can also be specified at
invocation.

These options can be specified at invocation and set by the SET OPTION command:

1ADSTOP
AMODE24
AMODE31
AMODE64
ASCII
AUTOLOAD
AUTOSIZE
BCX
CKSUBCM
CMDLOG
CMPEXIT

DMS0
EXITEXEC
FULLQUAL
HEXDISP
HEXINPUT
IMPMACRO
INVPSW
LSMDEBUG
MACROLOG
MODMAP
NOAUTOLD

NOAUTOSZ
NOBCX
NODSECTS
NOIMPMAC
NOINVPSW
NOMODMAP
NOSTOPNP
NOSTOPST
NOSVC97
NUCEXT

OFFSET
OLDBREAK
PASSPGM
PATH
PATHFILE
QWDUMP
RISK
RLOG
ROWSTYLE
SBORDER

SCDACTIV
SELFNUCX
STOPNOP
STOPSTMT
SVC97
SWAP
SYSTEM
TRACEALL
TRANS
UNFTDUMP

These options are set and changed by a command with the same name. They cannot be specified as an
invocation parameter, but each option has an initial value:

178 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

APROGMSG
AUDIT

BRIEF
COMPACT

MAJOR
MSGID

MSGMODE
SAREGS

SPACE

These options are set by a command with the same name, and can be specified as an invocation
parameter:

COLORS COLOURS MODE

These options are specified only as an invocation option. They cannot be changed by a command, or by
the SET OPTION command:

FASTPATH
ISA

LIBE
LINE

LUNAME
NOPROFIL

PROFILE
RLOG

For explanations of options specified at invocation, see Chapter 4, “Invoking IDF to debug your
program,” on page 21.

For explanations of options specified by a command, see the command description.

The current state of many options is displayed in the Options window, see “Options window” on page
75.

You can use the alternate syntax of option ON or SET option ON when the option name does not conflict
with any other command or SET command name. If the option name conflicts with a command name,
the alternate syntax SET option ON may still be used.

Examples
hexinput ON
SET offset ON
SET OPTION ON impmacro

SET PSW
Sets the current PSW.

�� SET PSW hex ��

hex
The new PSW value, expressed as 1 to 16 hexadecimal digits.

Normally the SET PSW command does not let you set the PSW to an invalid PSW. If the INVPSW option
is ON, then the PSW may be set to any combination of sixteen hexadecimal digits. This is useful in
writing a macro that gets control at a breakpoint in an error recovery routine and you want the PSW to
show the original PSW in error.

Normally it does not let you set the address part of the PSW to an address that is outside the programs
limits. If the TRACEALL option is on, the address part of the PSW may be set to any even address from
zero to VMSIZE. If the RISK option is on, the address part of the PSW may be set to any even address
you want.

Examples

Chapter 10. Commands and operating procedures 179

SET PSW FFE0000000020000

SET REGSTOP (CMS only)
Controls PER monitoring of General Purpose Register (GPR) contents.

�� SET REGSTop ON
OFF

general-purpose-register-number ��

ON Enable PER monitoring of the contents of the specified GPR.

OFF
Disable PER monitoring of the contents of the specified GPR.

general-purpose-register-number
The GPR number; an integer from 0 to 15.

See also “ADSTOPS (CMS only)” on page 95.

Examples
SET REGSTOP ON 4
SET REGSTOP ON 12
SET REGSTOP OFF 9

SET SIZE
Specifies the size in bytes of the target program specified when IDF was invoked.

�� SET SIZE module-length ��

module-length
An expression which resolves to the module length value.

IDF automatically sets the size based on information found in the module file. Use this command to
override the size determined by IDF.

Use the MODULE SIZE command to specify the size in bytes of other programs defined to IDF.

Examples
SET SIZE X’1A08’

180 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SHOW
Controls the display of source code and disassembly. It is used to enable the display of specific
information, and is the opposite of the HIDE command.

�� SHOw

�

BOTh

SOUrce separator
(1)

COMments
DEClares
DCLs

LINe
MACros
NOCode

STAtement
STMt

ALL
*

DISasm

��

Notes:

1 An option can be chosen no more than once.

BOTH
Show source code interspersed with the generated assembler.

SOURCE
Show source code only, without interspersed assembler code.

SEPARATOR
A comma, blank, or semicolon. Separates the suboptions of SOURCE and BOTH.

COMMENTS
Show block comment source when source code is displayed.

DECLARES | DCLS
Show declaration source when source code is displayed.

LINE
Show source line numbers when source code is displayed.

MACROS
Show macro expansion source when source code is displayed.

NOCODE
Show source lines with no corresponding object code when source code is displayed.

STATEMENT | STMT
Show source statement numbers when source code is displayed.

ALL | *
Show all source code, interspersed with the generated assembler.

DISASM
Show disassembled assembler code only, without source code.

The initial settings are:
v BOTH, COMMENTS, DECLARES, MACROS, NOCODE, STATEMENT

Chapter 10. Commands and operating procedures 181

Return codes
0 Operation successful
2 Keyword truncated
5 Invalid information type keyword

SIZE
Changes the size of a window on the screen.

�� SIZe
window
ADSTops
AFPR
BREak
DISasm
DUMP
OREGs
REGs
SKIPstep
STAtus
LSMinfo

Location ��

Location:

row
+ column
- +

* -
STANdard *
STD STANdard

STD

WINDOW
The window to be sized. Select by a Window Specification, or by placing the cursor in the window.

ADSTOPS
The AdStops window.

AFPR
The Additional Floating-Point Registers window.

BREAK
The Break window.

DISASM
The Disassembly window with the lowest window id.

DUMP
The Dump window with the lowest window id.

OREGS
The Old Registers window.

REGS
The Current Registers window.

182 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

SKIPSTEP
The Skipped Subroutines window.

STATUS
The Target Status window.

LSMINFO
The LSM Information window with the lowest window id.

rows
The number of window data rows to be displayed.

This may be specified as:
v an integer. Specifies an absolute number of window data rows.
v An integer prefixed by a +. Specifies the number of extra window data rows to be used.
v An integer prefixed by a -. Specifies the number of fewer window data rows to be used.
v * Indicates that the current number of data rows for this window should be used.
v STANdard | STD. Indicates that the standard number of data rows for this window type should

be used.

If this parameter is omitted, the position of the cursor on the screen is used as the new location of the
lower right corner of the window. In this case, the columns parameter must also be omitted.

columns
The number of window data columns to be displayed.

This may be specified as:
v An integer. Specifies an absolute number of window data columns.
v An integer prefixed by a +. Specifies the number of extra window data columns.
v An integer prefixed by a -. Specifies the number of fewer window data columns.
v * Indicates that the current number of data columns for this window should be used.
v STANdard | STD. Indicates that the standard number of data columns for this window type

should be used.

If this parameter is omitted, the number of data columns in the window remains the same.

If the window is not named, it is assumed that this command is specifying the number of rows in a
newly sized window.

Windows cannot be made larger than their maximum size. You can size them so that they overlap any
other window. However, no window can overlap the Command window. You cannot size a window so
that some of the window falls outside the screen. If you try, IDF repositions the window so that it
remains completely on the screen.

If a window is closed and then opened, its size is the system default for that type of window and not
that specified on the last SIZE command for that window type.

Examples

To change the window 01 to have 5 data rows and 60 data columns:
SIZE =01 5 60

To change the window in which the cursor is placed to have 8 data rows and 20 data columns:
SIZE 8 20

To add 2 data rows to the window in which the cursor is placed:
SIZE +2

Chapter 10. Commands and operating procedures 183

To resize window 03 so that the lower right corner is at the current cursor position:
SIZE =03

Return codes
0 Operation successful
1 Window name or Row location missing
2 Operand longer than eight characters
5 Window name invalid or syntax or other error in expression

SKIPSTEP
Sets or clears a subroutine to be skipped, or displays the Skipped Subroutines window.

�� SKIPstep
address

��

address
A storage location.

If an expression is present on the command line, that expression is used as the argument. If the
command line does not contain an expression, an attempt is made to determine the address from the
cursor position.

If no expression is provided on the command line, and it is not possible to determine an address from
the cursor position (for example, when the cursor is on the command line and the command line is
empty), the Skipped Subroutines window is opened if it is not already open. If the Skipped Subroutines
window is already open, it is closed.

If an address is supplied, either as an expression on the command line or by means of cursor position,
the subroutine at that address is skipped when the instruction that calls it is single-stepped, statement
stepped, or executed when the PATH or FASTPATH options are on. If the subroutine at the specified
address is already being skipped, it is removed from the list of skipped subroutines. The SKIPSTEP
command acts as a toggle to set or clear a skipped subroutine.

If a breakpoint or a watchpoint whose condition is true is placed within the execution path of the
subroutine to be skipped, execution stops at that breakpoint or watchpoint.

Return codes
0 Operation successful
1 No address specified
5 Syntax or other error in expression
6 Location, or location does not contain a valid instruction

SPACE
Separates the display of variables or sets of components with a blank line.

�� SPAce ON
OFF

��

184 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ON Enable the display of the blank separator line.

OFF
Disable the display of the blank separator line.

When many variables or structure components are displayed, IDF normally begins the display of each
variable or set of components immediately. This command can separate each variable or set of
components with a blank line.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown

STATUS
Opens and closes (toggles) the Target Status window that contains information about the target programs.

�� STAtus ��

For each target program, this includes:
v the target program name
v the target program start location
v the target program length (bytes)
v the target program primary entrypoint location if the first segment of any program object
v the number of internal assembler level symbols known to IDF

Information about the initial target program is shown when the Target Status window is opened. If many
target programs are loaded, the PREVIOUS or NEXT commands may be used to scroll the Target Status
window to view the information for the extra programs.

The target program name is highlighted when the information for the qualified program is shown.

Return codes
0 Operation successful

STEP
Executes the next instruction in the target program.

�� STEp ��

If the STOPNOP option is OFF or the NOSTOPNP option is ON, then IDF does not stop on NOP and
NOPR instructions that follow BAL, BALR, BAS, and BASR instructions.

Step works by establishing a breakpoint at the next instruction which is immediately reset once reached.
If an Execute instruction has the immediately following instruction as its target, then single-stepping from
the EX will fail (see “BREAK” on page 100 for information about how breakpoints are established).

Chapter 10. Commands and operating procedures 185

For more details see “Controlling single-stepping your program” on page 86

Return codes
0 Next instruction is executed when macro exits
6 Single-step mode locked out pending execution of startup command

STMTSTEP
Performs a repeated single-step operation until the target program is executing a source statement other
than the one it was executing when the command was issued.

�� STMTstep ��

If a significant event occurs during the execution of the STMTSTEP command, execution stops at that
point. Examples of significant events are cases where the target has branched outside its boundaries,
completed, and returned control to IDF, breakpoints, watchpoints, and so on.

By default, if the repeated single-step operation reaches code that is within a code section for which IDF
Language extract data was not loaded, IDF stops single-stepping. Turning off the STOPSTMT option or
using the NOSTOPST option prevents IDF from stopping at these points.

No exit routine processing is performed during, or at the completion of, the STMTSTEP command. As
with MRUN or MSTEP, if the STMTSTEP command is issued within a macro, use EXTRACT EVENT to
determine what type of event completed the command.

If you issue the STMTSTEP command when the PSW is pointing to code that is within a code section for
which IDF Language extract data was not loaded, IDF attempts to issue LANGUAGE LOAD for you.
This only works if the name of the code section (CSECT) containing the code matches the file name of the
extract file. If you do not want IDF to automatically issue these LANGUAGE LOAD commands you
should set the AUTOLOAD option to OFF or the NOAUTOLD option to ON.

If the STOPNOP option is OFF or the NOSTOPNP option was used, then IDF does not stop on NOP and
NOPR instructions that follow BAL, BALR, BAS, and BASR instructions.

z/VM If you issue STMTSTEP from within an IDF macro, you should ensure that it is issued through
the LPSW Fastpath addressing environment, which is the default environment established when
the IDF macro is entered. Using this interface eliminates any SVC linkages between REXX and
IDF, so that IDF can provide optimum flexibility in what the target program can itself execute
under STMTSTEP. See the usage notes under “MRUN” on page 149 for further details.

For more details see “Controlling single-stepping your program” on page 86.

Return codes
0 Operation successful
6 Command issued before IDF initialization is complete

186 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

STOKEY
Displays the storage key associated with an address.

�� STOKey
address

��

address
A storage location.

If an expression is present on the command line, that expression is used as the argument. If the
command line is empty, an attempt is made to determine the address from the cursor position.
Failing this, the current execution address is obtained from the PSW.

For information about expressions, see “Address expressions” on page 80.

Return codes
0 Operation successful

STOREMAP
Displays information about storage allocation.

�� STORemap

�

;

address

��

address-expression
A storage address expressions.

The portion of the Storage Allocation Map relevant to the address is displayed.

If no storage address expression is supplied, a complete Storage Allocation Map is displayed.

For information about expressions, see “Address expressions” on page 80.

The format of the Storage Allocation Map is system dependent.
v On CMS, it is like that displayed by the CMS STORMAP (ALL command.
v On z/OS, it is like that displayed by the TSO/E TEST LISTMAP command.
v On z/VSE, STOREMAP displays a message stating that it is unavailable in this environment.

Return codes
0 Operation successful
5 Arguments are invalid

Chapter 10. Commands and operating procedures 187

STRUCTURE
Displays the contents of the components of one or more structures.

�� STRucture
window

�

;

variable-name

��

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in a LSM Information window, uses or opens the first LSM
Information window.

variable-name
The variable name. Each variable is:
v The major component of a structure, in which case variables within the entire structure are visible.
v A component (member) at an intermediate level within a structure, in which case only variables

within that portion of the of the structure are visible.

Use dot-qualification to uniquely identify structure components with ambiguous names.

Simple structure components are defined by name only. You can define components within a based
structure by name only, in which case the declared basing is used by IDF, or you can specify an
explicit locating expression.

See “Variable expressions” on page 87 for a complete description of the syntax of the expressions
used as STRUCTURE variable name arguments.

Display is not supported for:
v embedded arrays within structures
v arrays of structures

The STRUCTURE display is in the form of a list of the component variables of the structure, in order of
definition.

The STRUCTURE display persists until:
v A STRUCTURE command without arguments is issued
v A UNION command without arguments is issued
v The window is closed using a CLOSE command.
v Another IDF Language command such as VARIABLE, ARRAY, CALLERS, PLOCATES, LANGUAGE

STATUS, or MAP is issued. These commands update the LSM Information window with new
information

v The target program completes execution
v Target program execution progresses beyond the structure's defined scope

If the contents of a variable within the structure change while the program is running to a breakpoint, the
changed data is shown on the screen when the breakpoint is reached.

You can change the displayed data by overtyping it.

In EBCDIC display mode, character data equal to X'FF' or below X'40' is displayed as a period character.

188 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

In ASCII display mode, character data which does not correspond to a displayable EBCDIC character is
displayed as a period character.

If a based structure was respecified, the current basing specification is used.

Note: The display of the contents of the variables within a structure may be incorrect if the PSW
indicates that execution is in the middle of a statement. This is because the variable may be in a
transitional state, not having yet achieved its new value. Variable contents are only certain at the start
and end of a statement.

Examples
Str struct1
Str addr(x’20000’)->struct1
Str addr(12(R2))->ptr->struct1
Str ptr->ptr2->struct3
Str ptr(3)->ptr->struct1
Str struct1;struct2
Str struct1 ;ptr->struct1
Str struct1 ; struct4

SUBSET (CMS only)
Enters CMS SUBSET.

�� SUBset ��

Valid unless the target program is a transient.

Return codes
0 Operation successful
6 The target program is a transient and SUBSET destroys the debugging environment

SVC (CMS only)
Controls the trapping of SVC instructions within the defined limits of the target programs.

�� SVC Y
N

��

Y Enable SVC trapping. Break window displays SVC=Y.

N Disable SVC trapping. Break window displays SVC=N.

Examples
SET SVC Y
SET SVC N

Chapter 10. Commands and operating procedures 189

SWAP
Displays the screen image associated with the target program.

�� SWAp ��

This function is only valid if the SWAP option is specified.

After displaying the target program's screen image, IDF waits until any PF key is pressed before
refreshing its display.

Return codes
0 Operation successful
6 Either the SWAP option was not specified, or no screen image was captured

SYMBOL
Defines an IDF internal (TESTRAN format) symbol.

�� SYMBOL (code-section-name)
module-name .

symbol-name code-section-offset �

� module-offset symbol-length I
E

F
U

symbol-type ��

module-name
The name of the module within which the symbol occurs. If present, the name must be followed by a
period. If omitted, the symbol is assumed to be within the qualified module.

code-section-name
The name of the code section within which the symbol occurs.

symbol-name
The name of the actual symbol.

code-section-offset
The offset of the symbol within the specified CSECT (hex).

module-offset
The offset of the symbol within the target module (hex).

symbol-length
The total length associated with the symbol (hex).

I The symbol is an internal symbol

E The symbol is externally known.

F The symbol is fully defined.

U The symbol is not fully defined. This may occur if no information is available to define the start of
the CSECT within which the symbol occurs.

190 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

symbol-type
The type of the symbol. This is a 2-digit hex value, and is one of the following:
00 Space
01 CSECT
02 DSECT
03 COMMON
04 Machine Instruction
05 CCW
06 EQU, LTORG, CNOP, ORG
10 C-con
14 X-con
18 B-con
20 F-con
24 H-con
28 E-con
2C D-con
30 A/Q-con
34 Y-con
38 S-con
3C V-con
40 P-con
44 Z-con
48 L-con
FE Self-defining, addr is actual value
FF Unknown, no symbol type available

Examples
SET SYMBOL (ASMIDF) ASMIDF 00000000 00000000 00000060 E F 01
SET SYMBOL (VARMVSXA.VARASM) BTHING 000009C0 00000050 00000028 I F 10

TASKS (TSO only)
Displays information about the executing tasks.

�� TASKs ��

v It is like that displayed by the TSO/E TEST LISTMAP command.
The SVC97 option is needed to allow task information to be obtained.

Return codes
0 Operation successful
6 Unable to obtain task information

TITLE
Sets the title text displayed on the top border line of the selected window.

�� TITle
window title-text

��

Chapter 10. Commands and operating procedures 191

window
A window. Select by a Window Specification, or by placing the cursor in the window.

title
The new title text for the window. If omitted, the window text reverts to the default for the window.

The new window title text is retained while the window is open, or if the window is minimized and later
maximized. If the window is closed, and later reopened, the window text for the new window is the
default for the window.

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
5 Arguments are invalid

TOP
Displays source code, starting at lowest available address within the current code section.

�� TOP
window

��

window
A Disassembly window. Select by a Window Specification or by placing the cursor in the window. If
omitted and the cursor is not in a Disassembly window, uses the first Disassembly window.

Return codes
0 Operation successful
6 No code section definition corresponds to the current address.

TRIGGER LOAD
Initiates deferred breakpoint processing for a module.

�� TRIgger LOAd module-name ��

module-name
The name of the module.

Examples

Given an initial target program FPROG, and a program BPROG which is loaded through a method that
bypasses IDF's DBREAK trapping, you can establish the deferred breakpoints as usual with DBREAK
commands. Once BPROG is in storage, the command TRIGGER LOAD BPROG causes IDF's deferred
breakpoint processing to begin.
dbreak (bprog.bedrock)...
trigger load bprog

192 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Return codes
0 Operation successful
1 Missing keyword
2 Keyword truncated
5 Arguments are invalid

TYPE
Displays type information for a variable.

�� TYPe
window

�

;

variable-name

��

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in a LSM Information window, uses or opens the first LSM
Information window.

variable-name
A variable name.

Only the variable name is relevant in determining the variable type attributes. Extra information such
as:
v Locating expressions for based variables
v array index values
v substring ranges

is not needed, and should not be specified.

The type attribute information for the variable includes:
v fundamental data type
v user-defined data type
v type hierarchy

The type attribute information display persists until:
v A TYPE command without arguments is issued
v The window is closed with a CLOSE command.
v Another IDF Language command such as VARIABLE, STRUCTURE, ARRAY, CALLERS, PLOCATES,

LANGUAGE STATUS, or MAP is issued. These commands update the LSM Information window with
new information

v The target program completes execution
v Target program execution progresses beyond the variable's defined scope

Examples
type stuff
type var1;var2

UNION
The UNION command is a synonym of the STRUCTURE command. For details, see “STRUCTURE” on
page 188.

Chapter 10. Commands and operating procedures 193

UNTIL
Executes the target program up to, but not including, an address.

�� UNTil
address

��

address
The address at which IDF should stop. Supply the address as part of the command, or by the cursor
position.

No exit routine processing is performed during, or at the completion of, the UNTIL command. As with
MRUN or MSTEP, if the UNTIL command is issued within a macro, you must use EXTRACT EVENT to
determine what type of event completed the command.

z/VM If you issue UNTIL from within an IDF macro, you should make sure that it is issued through
the LPSW Fastpath addressing environment. This is the default environment established when the
IDF macro is entered. Using this interface eliminates any SVC linkages between REXX and IDF,
so that IDF can provide optimum flexibility in what the target program can itself execute under
UNTIL. See the usage notes under “MRUN” on page 149 for further details.

Return codes
0 Operation successful
1 No address specified
5 Syntax or other error in expression
6 Command issued before IDF initialization is complete

UP
The UP command is a synonym of the PREVIOUS command. For details, see “PREVIOUS” on page 162.

VALUE
Evaluates an expression and displays its value.

�� VALue
address

��

address
An IDF address expression.

The value is displayed in hexadecimal format, symbolic format, if applicable, and decimal format.

For information about expressions, see “Address expressions” on page 80.

Return codes
0 Operation successful
5 The expression contained an error

194 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

VARIABLE
Displays the contents of one or more variables.

�� VARiable
window

�

;

variable-name

��

window
An LSM Information window. Select by a Window Specification, or by placing the cursor in the
window. If omitted and the cursor is not in a LSM Information window, uses or opens the first LSM
Information window.

variable-name
A variable name.

Define simple variables by name only. You can define based variables by name only, in which case
the declared basing is used by IDF, or you can specify an explicit locating expression.

See “Variable expressions” on page 87 for a complete description of the syntax of the expressions
used for VARIABLE variable name arguments.

If you supply no variable name, the nominated window is closed.

The variable display persists until:
v A VARIABLE command without arguments is issued
v The window is closed with a CLOSE command.
v Another IDF Language command such as STRUCTURE, ARRAY, TYPE, CALLERS, PLOCATES,

LANGUAGE STATUS, or MAP is issued. These commands update the LSM Information window with
new information

v The target program completes execution
v Target program execution progresses beyond the variable's defined scope

If the contents of the variable change while the program is running to a breakpoint, the changed data is
shown on the screen when the breakpoint is reached.

You can change the displayed data by overtyping it.

In EBCDIC display mode, character data equal to X'FF' or below X'40' are displayed as a period character.

In ASCII display mode, character data which does not correspond to a displayable EBCDIC character are
displayed as a period character.

If a based variable was respecified, the current basing specification is used.

Note: The display of the contents of the variables may be incorrect if the PSW indicates that execution is
in the middle of a statement. This is because the variable may be in a transitional state, not having yet
achieved its new value. Variable contents are only certain at the start and end of a statement.

Examples
var stuff
var addr(x’20000’)->stuff
var addr(12(R2))->ptr->stuff(2)

Chapter 10. Commands and operating procedures 195

var ptr->ptr2->stuff
var ptr(3)->ptr->stuff
var stuff(-5)
var stuff(1:10)
var stuff(1::25)
var var1;var2
var var1 ;ptr->stuff
var stuff(1:10) ; stuff(30:40)
var chrarray(15,1:10);chrarray(15,1::10)
var chrarray[15,0:9];chrarray[15,0::10]

VCHANGE
A special-purpose command used for command logging support.

�� VChange ��

When command logging is active, and a field within a window which is not an LSM Information window
is changed by operator overtyping, a VC entry is generated in the command log. This reproduces the
change when the command log is played back with the RLOG command.

For more details on command logging support, see “Command record and playback features” on page
80.

VERSION
Displays the IDF version information.

�� VERsion ��

The version number is in the form:
ASMIDF Vn.Rn.nn (generated ccyy.mm.dd hh:mm)

Return codes
0 Operation successful

VS
Special-purpose command used for command logging support.

�� VS ��

When command logging is active, and a field within an LSM Information window is changed by
operator overtyping, a VS entry is generated in the CMDLOG file which reproduces the change when the
command log is played back with the RLOG command.

196 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

For more details on command logging support, see “Command record and playback features” on page
80.

VSEP
Enables and disables blank line separating variables.

�� VSEP ON
OFF

��

ON Enable the blank line separating variables.

OFF
Disable the blank line separating variables.

WATCH
Supplies a condition that must be true for a particular breakpoint to take effect.

�� WATch

�

address
; comparator instruction

| command

��

address
The address of the breakpoint that is to be conditional.

Supply as part of the command, or from the cursor position. If supplied by means of cursor position
and a watchpoint condition is specified, the condition must be preceded by a semicolon. If the address
is supplied by means of cursor position and the command is a query (no condition supplied) the
semicolon need not be supplied.

comparator
The condition being checked. Must be:
= EQ ¬= NE > GT < LT >= GE <= LE

If the comparator and following parameters are not supplied the WATCH command is a query. In
this case, the existing watchpoint condition for the address is displayed, or a message indicates that
no watchpoint is active at the address.

instruction
A System/370 comparison instruction. This must be one of the following:
CR Compare register
CLR Compare logical register
C Compare
CL Compare logical
CH Compare halfword
CLM Compare logical characters under mask
CLC Compare logical characters

Chapter 10. Commands and operating procedures 197

This instruction is coded using standard assembler syntax, with a few exceptions that are detailed
below.

The operation of the watchpoint is that when the watchpoint is encountered, the instruction you
specified on the WATCH command is executed. If the result of the comparison instruction matches
the comparator you specified, the watchpoint condition is considered true and execution of the target
program stops, otherwise the target program continues to execute as if there was no breakpoint at the
specified address. When the breakpoint is taken, if there is a list of commands associated with the
watchpoint, they are executed before control is returned to you. These commands are specified at the
end of the WATCH command, separated from the comparator instruction and each other by vertical
bars (|). If a command receives a non-zero return code, the remaining commands in the list are not
executed.

For example, if you want to stop execution of the target program at the instruction labeled LOOP
only when R15 is nonzero, you can issue the following WATCH command and then start the target
program through the RUN command:

watch loop; ne c r15,=f’0’

Departures from standard assembler syntax are:
v When specifying a register, you must use the Rn or rn notation. If you only supply the number of

the register it is not recognized.
v Literal data is supported for the F, H, X, and C data types. The maximum length of literal data is

50 bytes. Only one literal value may be specified when using a CLC instruction. Comparing two
literals is meaningless as a watchpoint condition.

v When specifying a symbolic address, do not also specify a base register, since the result is to access
the specified address in storage as indexed by that register.

command
A command that is issued when the breakpoint is taken.

While the condition is false, control passes through the watchpoint and the target program is not
stopped. But when the condition is true and the target program is at the breakpoint address, the target
program is stopped for inspection.

Watchpoints are cleared by issuing a BREAK command or a SET BREAK OFF command for the address
in question.

When you issue a WATCH command that specifies a CLC instruction, the length actually used in the
comparison is shown to the right of the watchpoint condition if you query the watchpoint.

If a WATCH command with a condition is issued for an address at which there is a breakpoint, that
breakpoint is converted into a watchpoint. If commands were specified with the original breakpoint, they
are associated with the watchpoint unless commands were specified with the WATCH command.

If a watchpoint whose condition is true is placed within the execution path of the subroutine to be
skipped, execution stops at that watchpoint.

Examples

To set a conditional breakpoint at location X'20040', to be taken when the contents of R3 are equal to the
word in ARRAY within CSECT TEST as indexed by R1:
watch x’20040’ ; = c r3,(test)array(r1)

To set a conditional breakpoint at TEST, to be taken if R3 and R4 are not equal:
wat test;ne cr r3,r4

198 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

To set a watchpoint at LOOP, to be taken when the 5 characters pointed to by R1 are thing, any of the
following could be used:
watc loop; = clc 0(5,r1),=c’thingxxx’
watch loop ; eq clc =c’thing’,0(r1)
wat loop; = clc 0(r1),=c’thing’

Return codes
0 Operation successful
3 Keyword not recognized
1 No address specified
5 Syntax or other error in expression
6 Specified location does not contain a valid instruction, or breakpoint table full

WHERE
Displays the symbolic name for the given address.

�� WHEre
address

��

address
A storage location.

If an expression is present on the command line, that expression is used as the argument. If the
command line is empty, an attempt is made to determine the address from the cursor position.
Failing this, the current execution address is obtained from the PSW.

The WHERE command is like the VALUE command:
v If the address corresponds to a location within a module defined to IDF, both commands display the

same symbolic name.
v If the address corresponds to an address within a module which is defined in a system control block

but not yet defined to IDF:
– the WHERE command shows this module in the symbolic name
– the VALUE command displays the hexadecimal address value

v If the address corresponds to a location which is not within any known module, both commands
display the hexadecimal address value.

For information about expressions, see “Address expressions” on page 80.

Return codes
0 Operation successful
5 The expression contained an error

XEDEXIT (CMS only)
XEDIT the current exit routine.

�� XEDexit ��

Chapter 10. Commands and operating procedures 199

The name of the exit routine that is considered current is by default EXIT. It may be reset at IDF
invocation by means of the EXITEXEC option. It may also be reset by a macro with the SET EXITEXEC
command.

Be careful when executing CMS commands from within XEDIT. If you are debugging a user-area
program, and you invoke another program that runs in the user area while in XEDIT, it destroys the
debugging environment. The same care should be taken with routines that run in the transient area.

Return codes
0 Operation successful

ZONED
Sets or queries the format in which the data for zoned decimal variables are displayed.

�� ZONed
DECimal
*
HEX

��

DECIMAL
Zoned decimal variables are displayed in decimal. This is the initial value.

* Zoned decimal variables are displayed in the initial format (DECIMAL).

HEX
Zoned decimal variables are displayed in hexadecimal.

If the display format setting is not specified, the current display format for zoned decimal variables are
shown in a message.

Return codes
0 Operation successful
2 Keyword truncated
5 Not valid zoned decimal variable display format

200 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Part 3. Advanced topics, macros, profiles, exit routines

© Copyright IBM Corp. 1992, 2015 201

202 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 11. Writing an IDF profile

You can write a profile macro for IDF to change the display colors, PF key assignments, default open
windows, set predefined breakpoints for a given program, or perform other functions.

You do not need to have a profile macro, and if you do have one it can be as simple or exotic as you like.
One example is to get the name of the program that is being debugged, use it coupled with the CMS
NAMEFIND command to get information about that program, and automatically set a number of
breakpoints that apply to it.

Regardless of what uses you have planned for it, the profile must be written in the REXX language.

z/VM The profile must have a file type of ASM and can reside on any accessed disk.

z/OS The profile must be a member of the partitioned data sets (PDSs) allocated to the ASM DD name.

z/VSE The profile must reside in a member of a sublibrary in the active PROC chain.

The default file name is PROFILE, but you can specify another file name with the PROFILE option. It is
invoked by IDF just before the first display is presented (for more specific information about when the
profile is executed, see “When the PROFILE is executed.”) The default ADDRESS environment when your
profile begins execution is ASM. IDF does not examine the return code from your profile.

To change IDF parameters, use the SET command. You can examine the current settings with the
EXTRACT command. You can issue any IDF command from within your profile (though some may not
make sense at that point) and you can invoke IDF macros from within your profile.

Here is an example of a simple profile:
This profile begins by changing the display color assignments. It then opens the Current Registers

window, the Disassembly window and the Dump window, inverts the default dump mode (symbolic or
unformatted), and exits.

When you issue an IDF command in your profile, it behaves exactly as if you had pressed that PF key.

Warning: Be careful when executing CMS commands from within your profile. If you are debugging a
user-area program, and your profile invokes another program that runs in the user area, it will destroy
your debugging environment. The same care should be taken with routines that run in the transient area.

When the PROFILE is executed
The following sequence of events occurs when IDF is invoked:
1. Perform the first scan of the argument string. The objective during the first scan is to determine which

profile should be executed. These options are processed during the first scan:
AMODE24
AMODE31
AMODE64

/* PROFILE ASM */
’set color wryg’
’regs’
’disasm’
’dump’
’dumpmode’
exit

Figure 24. Example of a simple PROFILE

© Copyright IBM Corp. 1992, 2015 203

MODE (CMS only)
NOPROFIL
PROFILE

2. Execute the specified PROFILE.
3. Perform the second scan of the argument string. The objective during this scan is to set the specified

override options. All options not listed above are processed during this scan.
4. If the user's profile did not issue a LOAD command, load symbols and module.
5. Initialize the screen manager.

Command restrictions related to PROFILE execution
During its initialization phase, IDF loads the target program, loads any symbol definitions from the MAP
file or load module, and initializes its screen driver. Whether or not these events have occurred
determines whether some IDF commands may be issued. The target program and its symbols can be
loaded from within the PROFILE by means of the LOAD command; if this is not done explicitly, it is
done automatically by IDF after the PROFILE has completed. The screen driver is not initialized until
after the PROFILE has completed.

The following commands may only be issued before the target program and associated symbols are
loaded:
v Program-oriented:

– SET LIBE fn/$
– On CMS Only

- SET MODMAP ON
- SET NOMODMAP ON
- SET NUCEXT ON
- SET SYSTEM ON
- SET TRANS ON

– On z/OS Only
- SET SVC97 ON
- SET NOSVC97 ON

v Symbol-oriented:
– On CMS Only

- SET SELFNUCX SYMBOL

The following commands may only be issued after the target program and associated symbols are loaded:
v Program-oriented:

– EXTRACT ADSTOPS (CMS only)
– EXTRACT BREAK
– EXTRACT ALET
– EXTRACT AREGS
– EXTRACT LOAD
– EXTRACT REGS
– EXTRACT REGSTOPS (CMS only)
– SET ADSTOPS (CMS only)
– SET ALET
– SET AREG
– SET BASE
– SET BREAK
– SET EPOFFSET
– SET FPR
– SET GPR
– SET LOC
– SET PSW

204 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

– SET PSWSTEAL (CMS only)
– SET REGSTOP (CMS only)
– SET SIZE
– SET FASTPATH ON
– ADSTOPS (CMS only)
– BREAK
– RUN
– STEP

v Symbol-oriented:
– EXTRACT SELFNUCX (CMS only)

The following command may only be issued before the PROFILE has completed:
v MODE (CMS only)

The following commands may only be issued after the PROFILE has completed:
v EXTRACT ARGUMENT
v EXTRACT CURSOR
v SET CURSOR
v SWAP

Chapter 11. Writing an IDF profile 205

206 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 12. Writing IDF macros

You can tailor IDF through the use of REXX programs (macros) that IDF invokes. These macros have a
default ADDRESS of "ASM".

z/VM

The default ADDRESS environment upon entry to an IDF macro is in the form of a PSW. This
instructs REXX to use a LPSW to invoke IDF commands directly, whereas the "address IDF"
environment requires a CMSCALL linkage to IDF commands.

The "ASM" subcommand environment is still provided to your macros, and it is still perfectly
fine to explicitly direct most IDF commands through this named environment. However, the
MRUN and MSTEP commands "behave better" if they are directed through the default "LPSW
fastpath" interface.

See the usage notes under “MRUN” on page 149 for MRUN considerations, and see “REXX
linkage considerations” on page 208 for details about the available methods for invoking IDF
commands from REXX.

Most IDF commands can be issued within a macro. In particular, you can use the SET and EXTRACT
commands to set or extract the settings of various parameters, and the target program's memory and
registers.

IDF commands may be abbreviated as shown in Appendix C, “Abbreviations,” on page 285. There are
many potential uses for IDF macros. A few examples are:
v Provide a "swap" PF key to swap to another set of PF key definitions
v Set a number of predefined breakpoints for a program you are testing repeatedly
v XEDIT the listing file for the program you are debugging
v Redefine the ENTER key so that you can use your own syntax for expressions

An IDF macro:
v On CMS, can have any file name that you like, but the file type must be ASM.
v On z/OS, it must be a member of the PDSs allocated to the ASM DD name, with any member name

that you like.
v On z/VSE, it must be a member in a sublibrary in the active PROC chain.
v Must be written in the REXX language. It may optionally be compiled by the REXX compiler, in which

case the file type (DD name on z/OS) of the compiled EXEC must be ASM.

You can invoke a macro in several ways:
v Assuming that your ENTER key retains the default assignment of COMMAND, you can enter

MACRO, followed by the name of your macro and any arguments it requires, on the command line
and press ENTER.

v If you have specified the IMPMACRO option, you can type the macro's name on the command line
(without prefixing it with MACRO), followed by any necessary arguments, and press ENTER.

v You can set a PF key to MACRO myname args and press the PF key.
v You can issue the macro from within your PROFILE macro.

Your macro can issue any IDF commands you like. These are treated as if they had been invoked by
means of a PF key.

© Copyright IBM Corp. 1992, 2015 207

Here is an example of a special purpose macro that sets up some breakpoints, opens a Disassembly
window, and runs the target program to the first breakpoint:

IDF propagates the return code from your macro to the caller if it is invoked by another IDF macro.

If the top level macro exits with a nonzero return code, IDF issues a message, so if you want to perform
your own message handling you need to exit with a return code of zero.

There are times when one of several macros is setting an IDF option, and it is difficult to determine just
where the option is being set. The MACROLOG option helps debug this sort of macro problem.
Whenever this option is in effect, all IDF commands that are issued by either an IDF macro or a IDF exit
routine are written to the macro log. See “MACROLOG” on page 31 for the name of this log.

Warning: Be careful when executing CMS commands from within your macro. If you are debugging a
user-area program, and your macro invokes another program that runs in the user area, it destroys your
debugging environment. The same care should be taken with routines that run in the transient area.

Numbers in expressions can be specified in explicit (X'123', F'123') or implicit (123) notation. Numbers
that do not explicitly specify the base are evaluated according to the current setting of the HEXINPUT
option. When writing macros it is recommended that you use explicit base notation.

REXX linkage considerations
This section describes the linkages that are used by IDF to invoke REXX (for execution of an IDF macro),
and for REXX to in turn invoke IDF commands (as specified within that macro). You should consult the
formal REXX documentation and its online HELP files for more complete details of these topics. Here,
only a few of the important basics are discussed.

The REXX ADDRESS statement
The REXX language provides you with explicit and detailed control over how REXX should direct your
commands to the appropriate operating system or application component for execution. This "command
routing" is controlled by the REXX ADDRESS statement.

Rather than attempt to repeat all of the available REXX literature on this subject, here are a few examples
to show how ADDRESS can be used in a REXX exec.

Initial or default ADDRESS environment
Upon the initial entry to your exec, REXX provides a default ADDRESS. This is used for any commands
until the addressing is changed. For a normal EXEC file, the default addressing supplied by REXX is to
the "operating system" so that commands issued within the exec are by default routed to the underlying
operating system for execution.

For IDF macros, the default addressing environment is supplied by IDF when it invokes REXX to execute
the macro.

z/VM The default ADDRESS is in the form of a PSW, telling REXX that it should use its "LPSW
Fastpath" mechanism to directly enter IDF command handling.

/* ALLOPEN ASM */
’set break on loop’
’set break on exit’
’disasm’
’run’
exit 0

Figure 25. Example of a special purpose macro

208 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

z/OS The default ADDRESS is ASM"

z/VSE The default ADDRESS is "ASM"

Overriding the default ADDRESS Environment
When writing an IDF macro, you may find that you need to issue a command to the underlying
operating system, not a command to IDF. You do this by using the REXX ADDRESS statement.

For example:
address CMS CMS-command

This directs only this command to CMS, with subsequent commands directed to the default environment
(ASM).

Compare this with:
address CMS
CMS-command

This directs all commands to CMS until a subsequent address command overrides it.

"Which addressing environment is best for the default?" is generally a decision based upon how many
IDF commands are required versus how many host commands are required. And of course you are not
restricted to setting one default environment and leaving it that way until the end of your macro; you can
change it again at any time.

Of course in an IDF macro, it is expected that most of the commands are IDF commands. And in this
case, it is probably best to just leave the default addressing environment (as supplied at entry to your
macro) alone, and make "temporary overrides" to other names as you may require for the few (if any)
host commands issued.

Saving and restoring an ADDRESS environment
When making a “permanent change” to the default addressing environment, it is often required that later
in your exec, you restore the original environment again. This can be done in one of three basic ways:
1. By hard-coding a switch from “address CMS” to “address ASM” again, assuming you know that the

original default was “ASM”.
2. By exploiting a little-known feature of REXX that an “address” statement with no operands “pops”

the previous addressing environment. REXX saves just one recent environment this way, but that is
often all that is needed.

3. By explicitly saving and restoring the environment. The current environment can be saved by the
REXX ADDRESS() function call, as for example saveenv = address(). It can later be restored by
another form of the ADDRESS statement, using ADDRESS VALUE, as for example address value
saveenv. In this case, the saveenv is taken to be a REXX variable which holds the environment that is
to be set.

There is also some interesting save and restore logic within REXX itself, when calling internal procedures.
That topic is beyond the scope of this short introduction to ADDRESS.

z/VM

Since the default ADDRESS environment on entry to IDF macros on CMS is in the form of a
PSW, certain special precautions should be made when switching from one ADDRESS mode to
another. In particular, be aware that the PSW format is a non-printable hexadecimal eight bytes,
which can contain a X'40' byte that might be interpreted as a blank (causing a REXX syntax error
perhaps) if misused.

Chapter 12. Writing IDF macros 209

Procedures numbered 2 and 3 in the “Saving and Restoring” examples above are entirely safe for
manipulating a PSW form of environment. Procedure 1 depended on the initial environment
being “ASM”, which is not the case with IDF on CMS, so it should be avoided.

In most cases, there is no need to make a permanent change to the default addressing. You might
have just a couple of host commands that warrant a temporary “address CMS” override. So you
do not have to worry at all about any of this save and restore complexity.

IDF on CMS still supplies a usual “ASM” subcom environment, so that “address ASM
'WHATEVER'” is supported on TSO, z/VSE, and CMS. And in almost all cases, it is perfectly
acceptable to address IDF commands in this way. Make sure that the “LPSW Fastpath”
environment is used for an MRUN command. See “MRUN” on page 149 for further information
and cautions.

Example macros
Here are some sample macros that illustrate what may be done with macros.

EX
This macro determines and display the target of an EXECUTE instruction. It is meant to be invoked with
a PF key, but it can also be invoked from the command line with an address.
/*REXX --*/
/* */
/* EX - DISASM the instruction which is the target of an */
/* EXecute instruction and display the results in a */
/* message. */
/* */
/* If the cursor is positioned on an EXecute instruction, or */
/* the cursor is on the command line but the address of a valid */
/* EXecute instruction has been entered, or if the PSW points */
/* to a valid EXecute instruction, dis-assemble the target of */
/* EXecute instruction and display the results as a message. */
/* */
/*---*/

/*---*/
/* Determine which instruction is involved. */
/* */
/* If EXTRACT ARGUMENT gives RC¬=0, IDF will already have issued */
/* an error message. In this case, we exit with RC=-3 to prevent */
/* IDF from overlaying that message with another that says "MACRO */
/* RC=xx" if the argument came from the command line. */
/*---*/

’EXTRACT ARGUMENT’
If RC ¬= 0 Then

Exit -3 /* RC=-3 to prevent msg overlay */

If source = ’’ Then /* no address provided */
Do

’EXTRACT VALUE 0(PSW)’ /* use next instruction address */
field = Word(EXPR, 1)

End

address = field /* field level resolution */
’EXTRACT DISASM X’’’address’’’’
If RC ¬= 0 | instr = ’’ Then /* not a valid instruction */
Do

’SET MSG Location’ address ’does not contain a valid EXecute’,
’instruction’

’SET ALARM’

210 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Exit
End
Parse Var instr 13 index 14 . 15 base 16 offset 19 . 35 opcode .

/*---*/
/* The opcode must be EX (execute) for this macro. */
/*---*/
If opcode ¬= ’EX’ Then

Do
’SET MSG’ STRIP(opcode) ’is not a valid target for the EX macro’
Exit

End

/*---*/
/* Now convert the hex index, base, and offset to an expression */
/*---*/
reghex = ’123456789ABCDEF’
oper = "X’"offset"’"

If index ¬= ’0’ Then
oper = oper’+0(R’index(reghex,index)’)’

If base ¬= ’0’ Then
oper = oper’+0(R’index(reghex,base)’)’

/*---*/
/* Dump the indicated memory area and exit */
/*---*/
’Extract Disasm’ oper
’SET MSG’ instr

Exit

REGS
This macro toggles the Current Registers window, and if it is opened, places it at the top of the screen.
/*REXX --*/
/* */
/* REGS - Toggle the current registers window. */
/* */
/* When the REGS window is opened, it will be moved on the IDF */
/* display so that it is the first window. */
/* */
/*---*/

’Regs’ /* Toggle REGS window */

’Extract Cursor’ /* Obtain window information */
n = Find(display,’REGS’) /* Is REGS window present? */
If n ¬= 0 Then /* Yes? Force to be 1st window */

’Order =’n

Exit

SYSCMD
This macro issues a command to the operating system from the IDF command line. On CMS, transient
modules, nucleus extensions and EXECs run. On TSO, any unauthorized command or REXX EXEC runs.
On z/VSE, REXX/VSE commands or REXX programs run.
/*REXX --*/
/* */
/* Issue the command to the system. */
/* */
/*---*/

Parse Arg cmd /* Obtain any operands */

Chapter 12. Writing IDF macros 211

Parse Upper Source OpSys . /* Determine current OS */

Select

When (OpSys = ’TSO’) Then /* Handle TSO command */
Do

Address TSO cmd /* Issue command */
trc = rc
’Refresh’ /* Refresh WDB screen */

End

When (OpSys = ’CMS’) Then /* Handle CMS command */
Do

Address CMS cmd /* Issue command */
trc = rc

End

When (OpSys = ’VSE’) Then /* Handle VSE command */
Do

Address VSE cmd /* Issue command */
trc = rc

End
Otherwise

Do
’SET MSG Not on TSO or CMS or VSE - Unable to issue command’
trc = -3

End

End

Exit trc

212 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 13. The IDF exit routine

An exit routine (also called “exit exec”) is a special purpose IDF macro, which runs when certain events
occur.

For general instructions on writing a REXX macro, see “REXX linkage considerations” on page 208. For
instructions on writing a compiled-language exit routine, see “Writing a compiled-language IDF exit
routine” on page 215.

Naming the exit routine
The default name of the macro that serves as the exit routine is "EXIT". Change it at IDF invocation with
the EXITEXEC option, or during IDF execution with the SET EXITEXEC command.

Controlling exit routine processing
Exit routine processing is enabled and disabled by the EXITEXEC command.

If exit routine processing is enabled, and the currently defined exit routine exists, then when one of the
following events occurs, the exit routine is invoked to determine whether or not to notify the operator:
v IDF is preparing to present its first screen display
v A breakpoint is reached
v The target program branches outside of its memory limits
v A condition exists which puts IDF at risk of losing control
v A program check occurs
v The target program experiences a CMS, z/OS, or z/VSE ABEND
v The target program has completed and returned control to IDF
v A single-step operation has just completed
v On CMS only:

– SVC tracing is in effect and an SVC is reached
– A monitored storage location is modified
– A monitored register is modified

The RUNEXIT command also invokes the exit routine

Passing the reason for invocation
When the exit routine is invoked, the first token passed to it indicates the reason it was invoked. This
could be:
INIT IDF is preparing to present its first screen display.
BREAK

A breakpoint has been reached.
LIMITS

A target program has branched outside of its memory limits.
WARN

IDF is at risk because of code the target program has, or is about to, execute.

When the event code is "WARN", the last Command window message display line in the
Command window is set to one of these messages:
v ASMMAI025W
v ASMMAI026W
v ASMMAI027W
v ASMMAI091W

© Copyright IBM Corp. 1992, 2015 213

v ASMMAI221W

See “Message numbers and severity levels” on page 263 for the text of each message, and the
suggested user response.

The contents of the last message should be extracted using the EXTRACT LASTMSG command,
and an appropriate action taken by the exit routine.

PROGCHK
A program check has occurred.

ABEND
The target program experienced a CMS, z/OS, or z/VSE ABEND.

PFKEY
The RUNEXIT command was issued.

DONE
The target program has completed and returned control to IDF

STEP A single-step operation was just completed.
QUIT The operator has issued the QUIT or RCQUIT command.
SVC CMS Only. SVC tracing is in effect and an SVC instruction has been reached.
ADSTOP

CMS Only. A monitored storage location has been modified.
REGSTOP

CMS Only. A monitored register has been modified.

Looking at the address
Unless the first token of the argument string passed to the exit routine is "PFKEY", it will also be passed
the address at which the event occurred. The argument string passed to the exit routine can be parsed
with the following REXX instruction:
Parse Upper Arg reason hexvalue . ’(’ csect ’)’ symbolic

Assume that a breakpoint occurs at label LOOP, which is at location X'2000E' in CSECT ALLOPEN, which
begins at X'20000'. After this Parse instruction, the following variables are set:
REASON

BREAK
HEXVALUE

0002000E
CSECT

ALLOPEN
SYMBOLIC

ALLOPEN+14

Note: If the address is outside the target programs defined to IDF, the code section (CSECT) name is
omitted and the symbolic name is a second hexadecimal value.

Ignoring the event
The exit routine indicates to IDF that the event should be ignored and execution of the target program
should continue by exiting with a return code of 1. Any other return code indicates that the operator
should be notified as usual.

Other techniques
You can use the EXTRACT command to examine the contents of the registers and main storage, and if
necessary you can use host environment commands to examine other parts of the programming
environment that lie outside of IDF, for example to see if a given disk file has been created.

214 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If you need to maintain a count of the number of times the exit routine has been entered, or other status
information that must carry across its invocations, you can use the SET GLOBAL and EXTRACT
GLOBAL commands to access an 80-byte area within IDF that is provided for this purpose.

Warning: Be careful when executing CMS commands from within your exit routine. If you are debugging
a user-area program, and your exit routine invokes another program that runs in the user-area, it will
destroy your debugging environment. The same care should be taken with routines that run in the
transient area.

Writing a compiled-language IDF exit routine
For some applications, like code coverage or path analysis data collection, the performance of an exit
routine written in REXX is not adequate. To allow for higher-performance exit routines, IDF provides the
ability to use exit routines written in compiled languages.

Specifying that an exit routine is compiled code
To tell IDF that your exit routine is written in a compiled language, set the CMPEXIT option. Here is an
example profile which specifies a compiled-language exit routine:

The compiled-code exit routine is invoked to examine the same events as an exit routine that is written in
REXX.

On CMS, It is not required that you run IDF with PER exploitation disabled, but it is highly recommended
for applications that collect execution data because:
1. Performance with PER=Y is much slower than with PER=N
2. IDF operation with PER=Y is not as robust as with PER=N

Requirements for compiled-language exit routines
You must issue a SET EXITEXEC command before setting the CMPEXIT option so that IDF knows the
name of the exit routine.

z/VM Your compiled-language exit routine must be a NUCXLOADable CMS MODULE.

When the SET CMPEXIT ON command is issued, IDF will NUCXLOAD the exit routine.

IDF never invokes the NUCXLOADed exit routine by means of SVC-202. It obtains the entrypoint
address from the SCBLOCK associated with the exit routine after it is NUCXLOADed, and
invokes it with BALR.

z/OS When the SET CMPEXIT ON command is issued, IDF will load the exit with a LOAD SVC. IDF
calls the exit with a BALR after having obtained its address from the LOAD of the exit.

z/VSE When the SET CMPEXIT ON command is issued, IDF will load the exit with CDLOAD. IDF calls
the exit with a BALR after having obtained its address from the CDLOAD of the exit.

The compiled-language exit routine can be written in the language of your choice, so long as it is able to
conform to the calling sequence used by IDF. The interface used is designed for PL/I-like exit routines,
but an assembler routine can also be used.

/*--*/
Trace ?O
’MACRO PROFILE PROFILE’ /* execute usual profile */
’SET EXIT ASMIDFEX’ /* define name of exit module */
’SET CMPEXIT ON’ /* indicate compiled code exit */
’SET EXITEXEC ON’ /* activate exit routine */
Exit

Figure 26. Specifying a compiled-code exit routine

Chapter 13. The IDF exit routine 215

At entry to the exit routine, R1 points to a fixed length parameter list:

The first parameter is the call-type. The exit routine is invoked on event occurrence, and if it issues any
EXTRACT commands during its processing, it is re-entered (recursively) to receive the values normally
set into REXX variables. A call-type of 0 (zero) indicates an EVENT invocation. A call-type of 4 indicates a
VARIABLE invocation.

The exit routine, when entered, must inspect the call-type as its first order of business. It will not be
re-entered unless is issues EXTRACT commands to the IDF command processor, but if it is re-entered the
call-type value will have changed to 4, indicating a VARIABLE invocation.

The remaining parameters are either invariant, or apply to only one type of call.

All of the parameters passed and their meanings are:
1. Address of call-type: The call-type is contained in a fullword. A value of 0 (zero) indicates an

EVENT call, and a value of 4 indicates a VARIABLE call.
2. Address of subcommand interface: This address is the start of the IDF subcommand processor. The

exit routine may call the subcommand processor to execute IDF commands. It must enter the
subcommand processor with R1 containing the address of a parameter list as follows:

DC A(CSTRING)
DC A(CSTRINGL)
...

CSTRING DC C’whatever command string’
CSTRINGL DC A(L’CSTRING)

If an EXTRACT command is issued, the exit routine must be prepared to receive the variables
extracted. It will therefore be recursively re-entered and the call-type will indicate a VARIABLE call.

3. Address of current PSW: This word points to the target program's current PSW.
4. Address of current GPRs: This word points to the target program's current GPRs.
5. Address of variable name: (Applicable only when call-type is 4.) This word points to the start of a

character string which is the name of the extracted variable.
6. Address of variable name length: (Applicable only when call-type is 4.) This word points to a

fullword containing the length of the variable name in bytes.
7. Address of variable value: (Applicable only when call-type is 4.) This word points to a character

string which represents the current value of the extracted variable.
8. Address of variable value length: (Applicable only when call-type is 4.) This word points to a

fullword containing the length of the current value of the extracted variable in bytes.
9. Address of pstring: (Applicable only when call-type is 0.) This word points to the start of a character

string describing the event causing the exit routine's invocation. The contents of the character string
are described in Chapter 13, “The IDF exit routine,” on page 213.

* parameter list passed to compiled-code exit routine
DC A(calltype) address of call-type (fullword)
DC V(subcom) address of subcommand interface
DC A(psw) address of current PSW
DC A(gpr) address of current GPRs
DC A(varname) address of variable name
DC A(varnamel) address of variable name length
DS A(varval) address of variable value
DC A(varvaln) address of variable value length
DS A(pstring) address of pstring
DC A(pstringl) address of pstring length

Figure 27. Parameter list passed to compiled-code exit routine

216 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

10. Address of pstring length: (Applicable only when call-type is 0.) This word points to a fullword
which contains the number of bytes in the parameter string which describes the event causing the
exit routine's invocation.

Chapter 13. The IDF exit routine 217

218 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 14. REXX variables available to macros

IDF provides the EXTRACT command so that an IDF macro can obtain information about IDF, IDF
Language Support, or the target program and the environment in which it is executing.

The EXTRACT command returns data in:
v one or more fixed variables, or fixed stemmed arrays
v a stemmed array controlled by the STEM command

A REXX stemmed array will consist of "stem.n", where stem.0 contains the number of items in the
stemmed variable array, and the remaining items contain the requested information.

REXX variables with fixed names
The following table lists all REXX variables whose names are fixed, and the EXTRACT command that
sets each variable:

Table 2. REXX variables with fixed names

Variable Command Which Sets Variable

ADSTOP.n EXTRACT ADSTOP

ALET EXTRACT ALET

AR.n EXTRACT AREGS

AREA EXTRACT LOAD

BREAK.n EXTRACT BREAK

COLORS EXTRACT COLORS, EXTRACT COLOURS

COMMAND EXTRACT CMDMSG

CPDISASM EXTRACT CURSOR

CPDUMP EXTRACT CURSOR

CSECT EXTRACT DISASM

DISPLAY EXTRACT CURSOR

EPOFFSET EXTRACT LOAD

EVENT EXTRACT EVENT

EXACT EXTRACT ARGUMENT, EXTRACT CURSOR

EXITEXEC EXTRACT EXITEXEC

EXPR EXTRACT VALUE

FIELD EXTRACT ARGUMENT, EXTRACT CURSOR

FPR.n EXTRACT REGS

GLOBAL EXTRACT GLOBAL

GPR.n EXTRACT REGS, EXTRACT REGSTOPS

HEXCURSR EXTRACT CURSOR

ICOUNT EXTRACT ICOUNT

INDIRECT EXTRACT ARGUMENT, EXTRACT CURSOR

INSTR EXTRACT DISASM

LOADLIB EXTRACT LOAD

© Copyright IBM Corp. 1992, 2015 219

Table 2. REXX variables with fixed names (continued)

Variable Command Which Sets Variable

LSM EXTRACT LOAD

MEMAREA EXTRACT LOCATION, EXTRACT LOCATION ALET

MODE EXTRACT MODE

MODULES.n EXTRACT MODULES

MSG1 EXTRACT CMDMSG

MSG2 EXTRACT CMDMSG

NAME EXTRACT LOAD

NINSTR EXTRACT DISASM

NPDISASM EXTRACT CURSOR

NPDUMP EXTRACT CURSOR

OAR.n EXTRACT AREGS

OFFSET EXTRACT LOAD

OFPR.n EXTRACT REGS

OGPR.n EXTRACT REGS

OPSW EXTRACT REGS

OPTION EXTRACT OPTIONS

ORIGIN EXTRACT LOAD

PBREAK.n EXTRACT BREAK

PER EXTRACT PER

PFK.n EXTRACT PFK

PLIST EXTRACT PLIST

PSW EXTRACT REGS

QUALIFY EXTRACT QUALIFY

SELFNUCX EXTRACT SELFNUCX

SIZE EXTRACT LOAD

SKIP.n EXTRACT SKIPSTEP

SOURCE EXTRACT ARGUMENT, EXTRACT CURSOR

STEM EXTRACT LANGUAGE STEM

SVC EXTRACT SVC

SYMBOL EXTRACT LOAD

SYMBOL.n EXTRACT SYMBOLS

VERSION EXTRACT VERSION

WINDOW.n EXTRACT WINDOWS

REXX variables with variable names
The following table lists the commands that return data in the REXX stemmed array whose name is
controlled by the STEM command. See Chapter 15, “The EXTRACT command,” on page 223 for more
details.

The name of the stemmed variable array defaults to LSM. and should normally not be altered.
v EXTRACT ARRAY

220 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

v EXTRACT CALLERS
v EXTRACT LANGUAGE ARGS
v EXTRACT LANGUAGE CMDS
v EXTRACT LANGUAGE COMMANDS
v EXTRACT LANGUAGE OPTIONS
v EXTRACT LANGUAGE STATUS
v EXTRACT LANGUAGE VERSION
v EXTRACT MAP
v EXTRACT MSTATUS
v EXTRACT NAMES
v EXTRACT PARMS
v EXTRACT PLOCATES
v EXTRACT QUERY
v EXTRACT SCOPE
v EXTRACT SCRVAR
v EXTRACT SOURCE
v EXTRACT STRUCTURE
v EXTRACT TYPE
v EXTRACT VARIABLE
v EXTRACT VDCL
v EXTRACT VDECLARE
v EXTRACT VLOC
v EXTRACT VVALUE

Chapter 14. REXX variables available to macros 221

222 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Chapter 15. The EXTRACT command

The EXTRACT command is used to return various types of information to a macro through REXX
variables or stemmed arrays. This includes:
v IDF options
v IDF settings
v IDF invocation parameter string
v user register values
v user storage values
v user variable data
v user program information
v user symbol information

The items in the rest of this section describe the options of the EXTRACT command.

Return codes
The EXTRACT command has these return codes:
0 Operation successful
1 Missing keyword
2 Keyword truncated
3 Keyword unknown
4 Error attempting to set a REXX variable

Out of memory or EXECCOMM error
5 Arguments are invalid
6 Unable to honor EXTRACT command at this time

This return code will occur if, for example, you attempt to EXTRACT BREAK within your PROFILE
before the target program has been loaded into memory.

7 The command cannot run in this environment

This may be because this command is supported for a specified OS only (CMS, or TSO), or that
you must be in an ESA environment.

ADSTOPS (CMS only)
Returns all the currently set storage modification stops.

�� EXTract ADSTops ��

REXX variables set
ADSTOP.0

Number of AdStops set
ADSTOP.n

The next AdStop

© Copyright IBM Corp. 1992, 2015 223

ALET
Return the ALET used to qualify the dataspace to be displayed in a Dump window.

�� EXTract LOCATIon ALET alet number-of-bytes start-address ��

window
A Dump window Select by a Window Specification, or by placing the cursor in it. If omitted and the
cursor is not in a Dump window, returns the ALET for the first Dump window.

You must be in an ESA environment for this command to work.

REXX variables set
ALET The ALET of the selected window in EBCDIC HEX representation

Example
EXTRACT ALET =3

AREGS
Returns the Access Registers in EBCDIC HEX representation.

�� EXTract AREGs ��

You must be in an ESA environment for this command to work.

REXX variables set
AR.0 - AR.15

Current values of the Access Registers
OAR.0 - OAR.15

Previous values of the Access Registers

ARGUMENT | ARGS
Returns address argument from the command line or cursor position as appropriate.

�� EXTract ARGument
ARGs argument

��

argument
An expression. If it is invalid, the EXTRACT ARGUMENT command completes with a nonzero return
code. If EXTRACT ARGUMENT completes with a nonzero return code, an appropriate error message
is placed on the screen by IDF and the macro should exit with RC=-3, to stop IDF overlaying the
error message with another message stating the macro return code (if the macro exits with a nonzero
RC), or clearing the command line (if the macro exits with RC=0).

224 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

If the command line is empty, IDF attempts to determine an address based on cursor position.

REXX variables set
SOURCE

Contains the source of the argument:
blank No argument was available
COMMAND

The argument was obtained from the command line
PSWGPR

The argument was obtained from cursor position within the Current Registers window or
the Old Registers window

DISASM
The argument was obtained from cursor position within the Disassembly window

DUMP
The argument was obtained from cursor position within the Dump window

FIELD 8-character hexadecimal address; if determined from cursor position, the address corresponds to
the first byte of the field in which the cursor was positioned.

EXACT
8-character hexadecimal address; if determined from cursor position in a dump display, the
address corresponds to the exact byte of the field in which the cursor was positioned. Otherwise
EXACT is the same as FIELD.

INDIRECT
8-character hexadecimal address. If determined from the cursor position in the Disassembly
window, and the cursor was positioned at the first instruction shown, and that instruction is a
branch, the value in INDIRECT is the effective address of the branch instruction. If determined
from cursor position in a Dump window, and the cursor was in the first field displayed, and that
field is a fullword, INDIRECT will contain the contents of the field rather than its address.
Otherwise INDIRECT is the same as FIELD.

If the argument was determined from the command line, variables FIELD, EXACT, and INDIRECT will
contain the same value.

EXTRACT ARGUMENT follows the rules for obtaining arguments that are described in “Arguments and
cursor positioning” on page 83.

ARRAY
Returns information about the indicated array elements.

�� EXTract ARRay �

;

array-element-name ��

array-element-name
An array element name.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set

Chapter 15. The EXTRACT command 225

stemname.0
Number of items in the stemmed array

stemname.n
Information about the array elements

BREAK
Returns all the currently set breakpoints or, if an expression was specified, just the breakpoint at that
address.

�� EXTract BREak
breakpoint-address

��

breakpoint-address
The address of the breakpoint that is required.

REXX variables set
BREAK.0

Number of breakpoints set
BREAK.n

The next breakpoint
PBREAK.0

Number of PSWSTEAL breakpoints set
PBREAK.n

The next PSWSTEAL breakpoint

CALLERS
Returns information for each generation in the program caller hierarchy, including:
v Current execution location, as:

– Memory location, in IDF symbolic format
(module.CSECT)Stmt#nnnnn+offset

– Logical location
program-block-name+offset

v Save Area Header
v Save Area register values, if applicable

�� EXTract CALlers

�

*

;

program-caller-generation

��

* Return information for all caller generations.

program-caller-generation
A caller generation.

The program caller generations numbering convention is:
0 Current program

226 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

1 Parent (caller)
2 Grandparent (caller of caller), and so on

The SAREGS command (see “SAREGS” on page 172) is used to enable or disable the return of the Save
Area header and registers in the CALLERS data. The Save Area registers are formatted according to the
ROWSTYLE option setting.

The SALIMIT command (see “SALIMIT” on page 172) controls the maximum depth of the CALLERS
data. This is intended to prevent problems when the program call chain is damaged, or is of unexpected
depth (due to runaway recursion).

The name of the stemmed variable array defaults to LSM. and is set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) controls the maximum stemmed array index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the program caller hierarchy.

CMDMSG
Returns the current contents of the command line and message lines as currently displayed in the IDF
Command window.

�� EXTract CMDMsg ��

Also see “LASTMSG” on page 236.

All messages generated by IDF are returned with message prefixes, even if the MSGID option is OFF and
the message is displayed without the message id. User messages issued with a SET MSG command do
not have a message id.

REXX variables set
COMMAND

The current value of command line
MSG1 The current value of message line 1
MSG2 The current value of message line 2

COLORS
Returns the current color settings.

�� EXTract COLors
COLours

��

Chapter 15. The EXTRACT command 227

REXX variables set
COLORS

The current color settings (see “COLORS” on page 106 for format).

CURSOR
Returns information about the current position of the cursor.

�� EXTract CURsor ��

REXX variables set
DISPLAY

Contains a list of the currently open windows. It is a series of blank separated words with the
following meaning:
ADSTOP

The AdStops window.
AFPR The Additional Floating-Point Registers window.
BREAK

The Break window.
DISASM

A Disassembly window.
DUMP

A Dump window.
LSMINFO

An LSM Information window.
OREGS

The Old Registers window.
REGS The Current Registers window.
SKIP The Skipped Subroutines window.
STATUS

The Target Status window.
SOURCE

Contains the source of a cursor-derived argument address:
blank No cursor-derived argument was available
DISASM

Cursor was in the Disassembly window
DUMP

Cursor was in the Dump window
PSWGPR

Cursor was in the Current Registers window or the Old Registers window
FIELD Symbolic address as described in “Symbolic addresses” on page 229, corresponding to the first

byte of the field in which the cursor was positioned.
EXACT

Symbolic address as described in “Symbolic addresses” on page 229, corresponding to the exact
byte of the field in which the cursor was positioned if the cursor was in a dump field; otherwise
EXACT is the same as FIELD.

INDIRECT
Symbolic address as described in “Symbolic addresses” on page 229. If the cursor was positioned
in the disassemble display, and the cursor was positioned at the first instruction shown, and that
instruction is a branch, the value in INDIRECT is the effective address of the branch instruction.
If the cursor was positioned in a dump display, and the cursor was in the first field displayed,

228 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

and that field is a fullword, INDIRECT will contain the contents of the field rather than its
address. Otherwise INDIRECT is the same as FIELD.

HEXCURSR
Three, blank separated, 2-character hexadecimal value which represents the exact position of the
cursor on the screen. These values represent the window containing the cursor, the row within
the window of the cursor, and the column within the window of the cursor.

CPDISASM
Symbolic address as described in “Symbolic addresses,” corresponding to the address of the first
byte shown in the first Disassembly window.

CPDUMP
Symbolic address as described in “Symbolic addresses,” corresponding to the address of the first
byte shown in the first Dump window.

NPDISASM
Symbolic address as described “Symbolic addresses,” corresponding to the address of the first
byte that is shown in the first Disassembly window if it is scrolled forward.

NPDUMP
Symbolic address as described “Symbolic addresses,” corresponding to the address of the first
byte that is shown in the first Dump window if it is scrolled forward.

Symbolic addresses
Symbolic addresses consist of several tokens, and can be parsed with the following REXX instruction
(where NAME is the variable containing the symbolic address):
Parse Var name hexvalue . ’(’ csect ’)’ symbolic

After this Parse instruction, the following variables contain, for example:
NAME

0002000C (ALLOPEN) ALLOPEN+12
HEXVALUE

0002000C
CSECT

ALLOPEN
SYMBOLIC

ALLOPEN+12

If the address is outside of the target programs defined to IDF, the code section (CSECT) name is omitted
and the symbolic name is a second hexadecimal value.

If the address is outside the currently qualified module or the FULLQUAL option is ON, then the code
section name as defined above is module.csect, where module is the name of module containing the
address.

EXTRACT CURSOR follows the rules for obtaining arguments that are described in “Arguments and
cursor positioning” on page 83 except that it does not examine the command line for an argument.

If a Dump window is opened and the location being dumped is a 64 bit address, the variables FIELD,
EXTRACT, INDIRECT, CPDUMP and NPDUMP are 16 byte fields.

Chapter 15. The EXTRACT command 229

DISASM
Returns information about the specified instruction.

�� EXTract DISasm instruction-address ��

instruction-address
Any IDF expression. It is resolved to an address and used to find the instruction to be disassembled.

REXX variables set
INSTR

Disassembled instruction text; blank if the address specified by the expression does not contain a
valid instruction, otherwise:

Columns
Contents

01-08 Instruction address
10-24 Hexadecimal instruction value in halfwords
26-33 Label
35-39 Operation code
41 on Operands

NINSTR
Address of the next sequential instruction, as 8-digit hexadecimal (meaningless if INSTR is blank).
The address represents the "sequential flow" next instruction.
z/VM IDF knows that a fullword bitstring follows an SVC 201, that a fullword error return

address may follow an SVC 202, and that a halfword code follows an SVC 203, and
adjusts the returned NINSTR address accordingly. IDF also recognizes when the target
program has stolen the SVC New PSW, and if so returns the entry-point address of its
SVC FLIH when an SVC is disassembled.

NINSTRB
Address of the non-sequential (that is, a branching) flow instruction, if any, as 8-digit
hexadecimal, or blank if NINSTR represents the only possible next instruction. NINSTRB is set
for conditional branch instructions, and represents the next instruction if that conditional branch
is taken.

NADDR
Address of the next instruction or data which follows the nominated instruction. This is normally
the same as the NINSTR address for sequential flow. But the NINSTR may be different due to
IDF's recognition (on CMS) of special flows when an SVC is nominated.

CSECT
The name of the code section (CSECT) within which the instruction occurs (meaningless if INSTR
is blank).

If the address is outside the currently qualified module or the FULLQUAL option is ON, then the
code section name is module.csect, where module is the name of module containing the address.

Be careful when using addresses obtained from EXTRACT DISASM in other IDF commands.
Displacements in disassembled instructions may be shown in either explicit hex notation or implied
decimal notation (depending on the HEXDISP option). If you use a displacement that is given in implied
decimal notation, but the default input base is hex, the address will not be evaluated as expected.

The recommended procedure for working with expressions obtained from EXTRACT DISASM is to save
the default base setting and set it to decimal.

230 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The calculation of the NINSTR and NINSTRB addresses are done using the current target program
register values at the time of the EXTRACT DISASM command.

For example a BRANCH instruction might use a base register of R11 for its branching. If the EXTRACT
DISASM expression address resolves to the current PSW location, this is no problem whatsoever, since
the register values will be correct at that point. However, if the expression represents an address other
than the current PSW instruction, the register values might not match what they are at the point of
naturally executing that instruction, and so the NINSTR and NINSTRB address might be incorrect.

EVENT
Returns data about the last event which occurred in the target program.

�� EXTract EVEnt ��

REXX variables set
EVENT

Event information, in the same format as the argument string passed to an exit routine; see
Chapter 13, “The IDF exit routine,” on page 213 for a description of this information.

COMMAND
The name of the command which last started the target executing.

EXITEXEC
Returns the name of the currently assigned exit routine.

�� EXTract EXItexec ��

REXX variables set
EXITEXEC

The name of the currently assigned exit routine

GLOBAL
Returns the current setting of the IDF global variable.

�� EXTract GLObal ��

This global variable is initially set to blanks by IDF. It may be reset by any IDF macro through the SET
GLOBAL command, and is intended for macro-to-macro communication.

REXX variables set
GLOBAL

The last setting of the IDF global variable

Chapter 15. The EXTRACT command 231

GLOBAL STEM
Reads the data in the specified Global Storage stems, and write it to the same named REXX stemmed
arrays.

�� EXTract GLObal � stem-name. ��

stem-name
A Global Storage stem name.

The terminating period is needed for each name.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information for the stemmed array element

GLOBAL STEMS
Returns the names of all currently defined Global Storage stems.

�� EXTract GLObal STEMs ��

REXX variables set
GLOBALS.0

The number of Global Storage stems defined
GLOBALS.n

The name of the nth Global Storage stem

GSTATUS
Returns information about the storage used to contain the Global Storage data which has been loaded
with SET GLOBAL STEM commands. This includes:
v number of Global Storage stems
v Global Storage storage consumption (total, direct, pooled)
v Global Storage storage pool utilization, including the number of AREAs in the pool which are unused

�� EXTract GSTAtus ��

232 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the LSM Information window command arguments

ICOUNT
Returns the number of instructions executed since the last ICOUNT command.

�� EXTract ICOunt ��

REXX variables set
ICOUNT

The number of instructions executed.

LANGUAGE ARGUMENTS | ARGS
Returns the current command arguments for each LSM Information window.

�� EXTract LANguage ARGs
ARGuments

��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134)

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the LSM Information window commands

Chapter 15. The EXTRACT command 233

LANGUAGE COMMANDS | CMDS
Returns the current command for each LSM Information window.

�� EXTract LANguage COMmands
CMDs

��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the LSM Information window commands

LANGUAGE OPTIONS
Returns information as to the current value of the various IDF Language Support settings.

�� EXTract LANguage OPTions ��

To obtain the current value of an individual IDF setting, the preferred method is to use the EXTRACT
Query command.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the current value of the various IDF Language Support settings.

234 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LANGUAGE STATUS
Returns information about the extract files which have been loaded with LANGUAGE LOAD commands.

�� EXTract LANguage STAtus

�

;

extract-file-name

��

extract-file-name
An extract file name. Information is returned only for those compiles which were contained within
the specific extract files. If no extract file names are specified, the default is to extract information for
all currently loaded (with LANGUAGE LOAD) language extract files.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the specified extract files.

LANGUAGE STEM
Returns the name of the REXX stemmed variable array which is used to return information to an IDF
macro as a result of all subsequent EXTRACT LANGUAGE commands, as well as a number of other
EXTRACT commands.

�� EXTract LANguage STEM ��

REXX variables set
STEM Name of the REXX stemmed variable array

LANGUAGE VERSION
Returns the IDF Language Support Version Information.

�� EXTract LANguage VERsion ��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

Chapter 15. The EXTRACT command 235

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.1

IDF Language Support version information text.

This has the form:
"ASMLANG Vn.Rn.nn (generated ccyy.ddd hh:mm)".

LASTMSG
Returns the last 10 messages that were issued by SET MSG commands, or as a result of the execution of
other IDF commands.

�� EXTract LASTMsg ��

All messages generated by IDF are returned with message prefixes, even if the MSGID option is OFF and
the message is displayed without the message id. User messages issued with a SET MSG command do
not have a message id.

All messages generated by IDF are returned, even if the MSGMODE option is OFF and the message was
not actually displayed in a Command window message display line.

Example

The LASTMSGM values of 0 and 1 may be used directly in Boolean tests, such as:
’EXTRACT LASTMSG’
Do I = 1 to lastmsg.0

If lastmsgm.i Then
Say lastmsg.i

End

REXX variables set
LASTMSG.0

Number of items in the stemmed array
LASTMSG.n

The message text (with message id, if available), of the last n messages, with the most recent
message in LASTMSG.1.

LASTMSGM.0
Number of items in the stemmed array

LASTMSGM.n
The value of the MSGMODE setting at the time the nth message was issued. This is one of:
0 MSGMODE was OFF
1 MSGMODE was ON

236 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LOAD
Returns information about the program specified when IDF was invoked and where it is loaded in
memory.

�� EXTract LOAd ��

REXX variables set
NAME

The name of the program module
AREA The area in which the program is loaded:

USER User program area
TRANS

CMS Transient area at location X'0E000'-X'0FFFF'
NUCEXT

CMS Nucleus Extension area
SYMBOL

The number of symbols defined
ORIGIN

The program's origin in memory, 8-digit hexadecimal
EPOFFSET

The offset within the program of its entrypoint, 8-digit hexadecimal
OFFSET

The current value of the offset (set by the OFFSET command), 8-digit hexadecimal
SIZE The size of the program in bytes, 8-digit hexadecimal
LOADLIB

The name of the loadlib specified, or blank

LOCATION
Extracts bytes of main memory.

�� EXTract LOCATIon number-of-bytes start-address ��

number-of-bytes
Number of bytes of main memory to be extracted.

start-address
An expression giving the starting address.

If the expression contains an access register then the storage that is extracted will come from the
dataspace identified by the ALET in the referenced access register.

REXX variables set
MEMAREA

Contents of the specified memory area

The EXTRACT LOCATION command allows you to retrieve storage within your program's defined
limits. For more details on your program's defined limits and how to change them, see (CMS) “Your
program's defined limits” on page 56 and (TSO) “Your program's defined limits” on page 49.

Chapter 15. The EXTRACT command 237

If the TRACEALL option or the RISK option is set, you may be able to retrieve storage beyond the
program's defined limits.

Example
EXTRACT LOCATION 8 0(R1)

This example sets REXX variable MEMAREA to the contents of eight bytes pointed to by the target
program's R1.
EXTRACT LOCATION 8 0(AR2)

This example sets REXX variable MEMAREA to the contents of eight bytes pointed to by the target
program's R2 in the dataspace identified by the ALET in AR2.

LOCATION ALET
Extracts bytes of dataspace.

�� EXTract LOCATIon ALET alet number-of-bytes start-address ��

access-link-entry-token
An expression that specifies the ALET for the dataspace.

number-of-bytes
Number of bytes of main memory to be extracted.

start-address
An expression giving the starting address.

REXX variables set
MEMAREA

Contents of the specified memory area

Example
EXTRACT LOCATION ALET 10003 4 X’1000’
EXTRACT LOCATION ALET 10004 8 0(R1)

MAP
Returns information about the location of all modules and code sections known to IDF, as well as the
name of the extract file which may be associated with each code section.

�� EXTract MAP

�

*

;

module-name

��

* Extract information for all currently known modules.

238 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

module-name
A module name. Information is returned for the nominated modules, and the CSECTs which are a
part of those modules.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the module and code sections

MODE (CMS only)
Returns the current file mode.

�� EXTract MODE ��

The initial file mode is A1.

It may be change by specifying the MODE option at invocation, or by issuing the MODE command in
the PROFILE macro.

REXX variables set
MODE

The current file mode

MODULES
Returns information about the modules defined to IDF.

�� EXTract MODUles ��

REXX variables set
MODULES.0

Number of modules defined to IDF
MODULES.n

Name origin size symbols, where:
NAME

The name of module.
ORIGIN

The module's origin in memory, eight digit hexadecimal.
SIZE The size of the module origin in bytes, eight digit hexadecimal.

Chapter 15. The EXTRACT command 239

SYMBOLS
The number of symbols defined to IDF that are associated with this module.

MSTATUS
Returns information about the storage used to contain the extract data information which has been
loaded with LANGUAGE LOAD commands. This includes:
v number of compile areas
v extract data storage consumption (total, direct, pooled)
v extract data storage pool utilization, including the number of AREAs in the pool which are unused

�� EXTract MStatus ��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the extract data storage

NAMES
Returns information about symbol names.

�� EXTract NAMes

�

;

symbol-name-pattern

��

symbol-name-pattern
A pattern to match against all the symbol names.

See “NAMES” on page 154 for details about pattern meta-characters. If omitted, all symbol names are
returned.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set

240 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

stemname.0
Number of items in the stemmed array

stemname.n
Information about the symbol names

OPTIONS
Returns a list of all IDF options and their current settings.

�� EXTract OPTions ��

REXX variables set
OPTION

List of options and their current settings

The contents of variable OPTION have the following format:
CMDLOG=0 COMMAND=0 ... and so on

A value of 1 indicates that the option was last set ON; a value of 0 indicates that the option is OFF. For a
list of the options which are returned, see “SET OPTION” on page 178. For information about the
meaning of the options, see Chapter 4, “Invoking IDF to debug your program,” on page 21.

The string "AMODE31=0" or "AMODE31=1" is included in the data returned by EXTRACT OPTIONS.
This provides a means for macros to determine the current addressing mode.

PER (CMS only)
Returns the value of the PER setting.

�� EXTract PER ��

REXX variables set
PER Current PER setting:

v Y if active
v N if inactive
v D if unavailable (TSO, CMS/SP without SET ECMODE ON).

PFK
Extracts all current PFK definitions.

�� EXTract PFK ��

REXX variables set

Chapter 15. The EXTRACT command 241

PFK.0 - PFK.24
Current PFK settings

Where:
v Variable PFK.0 contains the assignment of the ENTER key.
v Variables PFK.1 through PFK.24 contain the assignments of PF1 through PF24.

If a PF key is undefined, its setting is returned as an asterisk (*).

PLIST
Obtains the arguments provided at IDF invocation.

�� EXTract PLIST ��

REXX variables set
PLIST Arguments passed to IDF at invocation

PLOCATES
Returns information about variables located though a locator (pointer) variable.

�� EXTract PLOcates �

;

locator-variable-name ��

locator-variable-name
A locator variable names.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the located variables

242 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

QUALIFY
Extracts the name of the module that is used with some commands and addresses when no explicit
module name is specified.

�� EXTract QUAlify ��

REXX variables set
QUALIFY

The currently qualified module.

QUERY SETTING
Returns the current value of the indicated indicator or option item.

�� EXTract Query argument ��

argument
The name of the indicator or option item. Information is available for:

AMODE
APROGMSG
ASCII
AUDIT
AUTH
AUTOLOAD
AUTOSIZE
BIT
BCX
BOUNDS
BRIEF
CHAR
CKSUBCM
CMDLOG
CMPEXIT

COMMENTS
COMPACT
DSECTS
DCL
DEBUG
DECLARE
DETAIL
DMS0
ENUM
EXLIMIT
FASTPATH
FIXED
FLOAT
FULLQUAL
HEXDISP
HEXINPUT

IMPMACRO
INVPSW
LIBE
MACROS
MACROLOG
MAJOR
MODE
MODMAP
MSGID
MSGMODE
NEGATIVE
NEST
NOCODE
NUCEXT
OFFSET

OLDBREAK
OPTIMIZE
PACKED
PADID
PASSPGM
PATH
PATHFILE
QWDUMP
RISK
RLOG
ROWSTYLE
SALIMIT
SAREGS
SCDACTIV
SELFNUCX

SHOW
STEM
STOPNOP
STOPSTMT
SUBSTRING
SVC97
SWAP
SYSTEM
TRACEALL
TRANS
UNFTDUMP
VSEP
XPATH
ZONED
1ADSTOP

This command eliminates the need to parse release-dependent information returned by EXTRACT
OPTIONS or EXTRACT LANGUAGE OPTIONS.

REXX variables set
QUERY.0

Number of items in the stemmed array
QUERY.n

Information about the indicator or option item current value.

Chapter 15. The EXTRACT command 243

REGS
Extracts the GPRs, FPRs, and PSW in EBCDIC HEX representation.

�� EXTract REGs ��

REXX variables set
GPR.0 - GPR.15

Current values of GPRs
OGPR.0 - OGPR.15

Previous values of GPRs
FPR.0 - FPR.15

Current values of FPRs, if available
OFPR.0 - OFPR.15

Previous values of FPRs, if available
PSW Current value of PSW
OPSW

Previous value of PSW
FPC Floating point control register, if available

If the option AMODE64 is on, the PSW is returned as a 32 byte field, and GPR.0 - GPR.15 are returned as
16 byte fields.

REGSTOPS (CMS only)
Returns a list of registers that have been selected for monitoring.

�� EXTract REGSTops ��

REXX variables set
GPR.0 - GPR.15

Each variable is set to either:
Y To indicate that the register is being monitored
N To indicate that it is not being monitored.

SCOPE
Returns information about a statement scope block.

�� EXTract SCOpe
address

��

address
An IDF address expression. Defines the statement scope block. If omitted, uses the current execution
location as determined from the PSW.

244 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.1

Scope block start statement number
stemname.2

Scope block end statement number
stemname.3

Scope block owner symbol name (if any)

SCRVAR
Returns the contents of the LSM Information window.

�� EXTract SCRvar ��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the LSM Information window contents.

SELFNUCX
Returns the current value of the self-load offset.

�� EXTract SELFNucx ��

The self-load offset is set by the SELFNUCX symbol-name option at IDF invocation, or by issuing the SET
SELFNUCX command.

REXX variables set
SELFNUCX

Contents are as follows:
v If the program is not self-loading, variable SELFNUCX is blank.

Chapter 15. The EXTRACT command 245

v If the self-load offset was specified as a symbol name, the contents of variable SELFNUCX
consist of two tokens. The first token is the symbol, and the second is an 8-digit hexadecimal
offset.

v If the self-load offset was specified as an absolute value, the contents of variable SELFNUCX
consist of two tokens. The first token is the string "<n/a>", and the second token is an 8-digit
hexadecimal offset.

SKIPSTEP
Returns currently skipped subroutines.

�� EXTract SKIPstep
address

��

address
An IDF expression. Address of subroutine to return. If omitted, all skipped subroutines are returned.

REXX variables set
SKIP.0 Number of subroutines skipped
SKIP.n

The next skipped subroutine

SOURCE
Returns source records.

�� EXTract SOUrce
address

��

address
The address. May be specified in the form of an IDF address expression. If omitted, uses the current
execution location as determined from the PSW.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

The source records for the specified memory address.

246 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

STOREMAP
Returns Storage Allocation Map information.

�� EXTract STORemap

�

;

addr-expr1

��

addr-expr1
A storage address expression. If omitted, returns an overall Storage Allocation Map.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Storage Allocation Map information

STRUCTURE
Returns information about structure or union components.

�� EXTract STRucture �

;

component-name ��

component-name
A structure or union component name.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the structure or union components

Chapter 15. The EXTRACT command 247

SVC (CMS only)
Returns the current SVC tracing state.

�� EXTract SVC ��

REXX variables set
SVC Current SVC tracing state:

Y If SVC tracing is in effect
N If SVC tracing is not in effect.

SYMBOLS
Returns information about known symbols.

�� EXTract SYMbols
module-name

��

module-name
A module name. Specifies which module's symbols should be returned. If omitted, returns the
symbols for the currently qualified module.

REXX variables set
SYMBOL.0

The number of symbols known to IDF.

Information about individual symbols is returned in SYMBOL.1 to SYMBOL.nnn
SYMBOL.n

Information about one symbol known to IDF.

Each REXX variable containing information about a symbol known to IDF will contain the following
information:
(<module.>csect) symbol reloc addr totlen intext full type

The fields returned have these meanings:
module

The name of the module within which the symbol occurs
v Present if the FULLQUAL option is ON
v Is followed by a period

csect The name of the code section within which the symbol occurs.
symbol

The name of the actual symbol.
reloc The offset of the symbol within the specified CSECT (hex).
addr The offset of the symbol within the target module (hex).
totlen The total length associated with the symbol (hex).
intext One character, either "I" or "E":

I The symbol is an internal symbol.
E The symbol is externally known.

full One character, either "F" or "U":

248 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

F The symbol is fully defined.
U The symbol is not fully defined; this may occur if no information is available to define

the start of the CSECT within which the symbol occurs.
type This is a 2-digit hex value which describes the type of symbol, and is one of:

00 Space
01 CSECT
02 DSECT
03 COMMON
04 Machine Instruction
05 CCW
06 EQU, LTORG, CNOP, ORG
10 C-con
14 X-con
18 B-con
20 F-con
24 H-con
28 E-con
2C D-con
30 A/Q-con
34 Y-con
38 S-con
3C V-con
40 P-con
44 Z-con
48 L-con
FE Self-defining, addr is actual value
FF Unknown, no symbol type available

TASKS
Returns information about the currently executing tasks.

�� EXTract TASks ��

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Task information

Chapter 15. The EXTRACT command 249

TYPE
Returns information about type attributes for variables.

�� EXTract TYPe �

;

variable-name ��

variable-name
A variable names.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Type information for the specified variables

UNION
A synonym for the command STRUCTURE. For details, see “STRUCTURE” on page 247.

VALUE
Returns the value of an expression.

�� EXTract VALue address ��

address
An IDF address expression.

REXX variables set
EXPR The value of the specified expression

If the address is outside of the programs defined to IDF, the code section (CSECT) name is omitted and
the symbolic name is a second hexadecimal value.

If the address is outside the currently qualified module or the FULLQUAL option is ON, then the code
section name as defined above is module.csect, where module is the name of module containing the
address.

Numbers in expressions can be specified in explicit (X'123', F'123') or implicit (123) notation. Numbers
that do not explicitly specify the base are evaluated according to the current setting of the HEXINPUT
option. When writing macros it is recommended that you use explicit base notation.

250 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Example
EXTRACT VALUE ALLOPEN+4(R2)

If symbol ALLOPEN is at X'20000' and the target program's R2 contained 8, the value returned is
X'2000C'. This value is returned in REXX variable EXPR as several tokens, and can be parsed with the
following instruction:
Parse Var EXPR hexvalue . ’(’ csect ’)’ symbolic

After this Parse instruction, the following variables are set:
EXPR 0002000C (ALLOPEN) ALLOPEN+12
HEXVALUE

0002000C
CSECT

ALLOPEN
SYMBOLIC

ALLOPEN+12

VARIABLE
Returns information about variables.

�� EXTract VARiable �

;

variable-name ��

variable-name
A variable names.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Information about the variables

VDECLARE | VDCL
Returns attribute information about variables.

�� EXTract VDEclare
VDCl

�

;

variable-name ��

Chapter 15. The EXTRACT command 251

variable-name
A variable name.

This command provides information which is independent of display format settings, except for SPACE.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Attribute information for the specified variables

VERSION
Returns the IDF version information.

�� EXTract VERsion ��

REXX variables set
VERSION

IDF version information text.

For more information, see “LANGUAGE VERSION” on page 235.

VLOC
Returns location information about the indicated variables.

�� EXTract VLOc �

;

variable-name ��

variable-name
A variable names.

This command provides information which is independent of display format settings, except for SPACE.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set

252 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

stemname.0
Number of items in the stemmed array

stemname.n
Location information for the specified variables

VVALUE
Returns data value information about variables.

�� EXTract VVAlues �

;

variable-name ��

variable-name
A variable name.

This command provides information which is independent of the COMPACT and BRIEF settings.

The name of the stemmed variable array defaults to LSM. and may be set by the LANGUAGE STEM
command (see “LANGUAGE STEM” on page 134).

The EXLIMIT command (see “EXLIMIT” on page 116) is used to control the maximum stemmed array
index value.

REXX variables set
stemname.0

Number of items in the stemmed array
stemname.n

Data value information for the specified variables

WINDOWS
Returns information about the screen and open windows.

�� EXTract WINdows ��

REXX variables set
WINDOW.0

n rows cols
v Where:

n The number of windows open on the screen.
rows The number of rows on the screen that can be filled with windows.
cols The number of columns on the screen.

v Information about individual windows is returned in variables of the form WINDOW.n.
WINDOW.n

type orow ocol rows cols start:next
v where:

type The type of the open window. It is one of:

Chapter 15. The EXTRACT command 253

ADSTOP
The AdStops window.

AFPR The Additional Floating-Point Registers window.
BREAK

The Break window.
DISASM

A Disassembly window.
DUMP

A Dump window.
LSMINFO

An LSM Information window.
MINIMIZE

Minimized Windows viewer.
OPTIONS

The Options window.
OREGS

The Old Registers window.
REGS The Current Registers window.
SKIP Skipped Subroutines window.
STAT The Target Status window.

orow The row on which the upper left corner of the window is located.
ocol The column on which the upper left corner of the window is located.
rows The number of rows in the window.
cols The number of columns in the window.
start The starting address for storage displayed in the window if it is a Disassembly

window or a Dump window.
next The address of storage to be displayed in the window if it is a Disassembly window or

a Dump window and it is scrolled. It is separated from the start address by a colon (:).

254 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Part 4. Appendixes

© Copyright IBM Corp. 1992, 2015 255

256 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Appendix A. ASMLANGX options

This section lists all of the ASMLANGX options, and provides information about each option.

ASM

�� ASM ��

This option indicates that ASM is the language being extracted. Since ASM is the default (and only)
language extracted, you need never use this option.

CONDASM | NOCONDASM

��
NOCONDASM

CONDASM
��

Use CONDASM to include conditional assembly statements and .* comments during extraction,
NOCONDASM to suppress them.

DCL | NODCL

��
DCL

NODCL
��

Use DCL to extract source code for declarations, including associated block comments, NODCL to not
extract them. (Variable information is extracted regardless.)

DEBUG

�� DEBUG ��

© Copyright IBM Corp. 1992, 2015 257

DEBUG is not intended for general use. It adds messages to the processing log file. These messages hold
internal diagnostic information for IDF Service problem analysis.

ERROR

�� ERROR ��

Use ERROR to list variables for which information is incomplete.

IFM (CMS only)

�� IFM fm ��

Default: IFM *

fm is the file mode to search initially for all input files, for a non-standard search path. If not found,
revert to the standard search path.

INCL | NOINCL

��
INCL

NOINCL
��

Use INCL to extract source code for includes, NOINCL to not extract it. (Variable information from
included files is extracted regardless.)

LOUD | QUIET

��
QUIET

LOUD
��

Use LOUD to issue messages to the terminal containing:
v the version and release of ASMLANGX
v the output file identifier

258 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

v the input file identifier
v processing progress information

Terminal messages are modified by the execution environment and OS runtime settings:
v On TSO, the messages respect the TSO MSGID setting:

MSGID
Message identifier and text are displayed

NOMSGID
Message text is displayed

v On z/OS Batch, the messages are written to the JES message log with WTO ROUTCDE=11. The message
identifier and text are shown.

v On CMS, the messages respect the CMS EMSG setting:

ON Message identifier and text are displayed

TEXT Message text is displayed

OFF Message is suppressed
v On z/VSE Batch, the messages are written to the console log. The message identifier and text are

shown.

A header is added to the output file containing:
v the version and release of ASMLANGX
v the input file identifier

Use QUIET to suppress the display of I (Informational), W (Warning) and E (Error) messages. QUIETLY
is an alias for QUIET.

MACDEF | NOMACDEF

��
NOMACDEF

MACDEF
��

Use MACDEF to include inline macro definitions during extraction, NOMACDEF to suppress them.

OFM (CMS only)

�� OFM fm ��

Default: OFM A1

fm specifies the file mode (FM) of the output file, if other than the default A1 is desired.

Appendix A. ASMLANGX options 259

OFN

�� OFN fn ��

Default: OFN output-file-name

fn specifies:
v On z/OS, the PDS member name of the output file.
v On CMS, the file name (FN) of the output file.
v On z/VSE, the librarian member name of the output member.

OFT

�� OFT ft ��

Default: OFT ASMLANGX

ft specifies:
v On z/OS, the DD name of the output file.
v On CMS, the file type (FT) of the output file.
v On z/VSE, not used.

PACK | NOPACK

��
PACK

NOPACK
��

Use PACK to compact redundant characters in source statement text, NOPACK to leave it as is.

PFM (CMS only)

�� PFM fm ��

Default: PFM *

260 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

fm specifies the file mode (FM) to initially search for the input file, if other than the standard search path
is desired. If not found, revert to the standard search path. This option overrides the IFM option.

PFT

�� PFT ft ��

Default: PFT SYSADATA for TSO and CMS, PFT SYSADAT for z/VSE

ft specifies:
v On CMS, the file type (FT) of the input file.
v On z/OS, the DD name of the input file.
v On z/VSE, the DLBL name of the input file.

SEQ | NOSEQ

��
NOSEQ

SEQ
��

Use SEQ to retain source sequence numbers in columns 73 to 80, NOSEQ to not write them to the extract
file. If the PACK option is selected, this significantly reduces the size of a typical extract file.

Appendix A. ASMLANGX options 261

262 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Appendix B. Diagnostic messages

Message numbers and severity levels
Each of the messages issued by IDF is of the form:

Message format

ASMmssnnnnl text

where:

ASM Is the component name for IDF and related utilities.

m Is the program identifier.

This is one of:

K ASMLKEDT (z/VSE Phase MAP Creation Utility)

L IDF Language Support

M IDF Base Debugger

X ASMLANGX (ADATA Extraction Utility)

ss Is the subsystem identifier.

This identifies the subsystem within the program which issued the message. Its main use is to
help IBM Service Personnel in tracking potential problems.

nnnn Is the message number.

l Is the message severity level.

This is one of:

I Informational message

A Action message

Used to prompt for user input

W Warning message

E Error message

S Severe error message

T Terminating error message

© Copyright IBM Corp. 1992, 2015 263

ASMLKEDT messages (z/VSE only)

ASMKLK000W Invalid LNKEDT parameter: txt1

Explanation: The parameter specified is not a valid
LNKEDT parameter.

User response: Correct the parameter to a valid
LNKEDT value.

ASMKLK001S No MAP produced

Explanation: A MAP file has not been produced.

User response: This message should be accompanied
by another error message to explain why this may have
occurred.

ASMKLK002S No Librarian DCB generated

Explanation: The librarian environment could not be
setup to create a MAP.

User response: This is an internal problem. Look for
any accompanying messages and if the problem cannot
be determined contact your IBM Support Center.

ASMKLK003S OPEN member name: phasename failed
RC=retcode

Explanation: A LIBRM OPEN request has failed for
the member specified with the return code specified.

User response: See return codes for the LIBRM OPEN
macro in the z/VSE: System Macros Reference.

ASMKLK004S PUT member name: phasename failed
RC=retcode

Explanation: A LIBRM PUT request has failed for the
member specified with the return code specified.

User response: See return codes for the LIBRM PUT
macro in the z/VSE: System Macros Reference.

ASMKLK005I Member name: phasename.MAP
cataloged into sublibrary: sublib.name

Explanation: Informational message describing the
member name and the sublibrary where the member
has been cataloged.

User response: None

ASMKLK006S CLOSE member name: phasename
failed RC=retcode

Explanation: A LIBRM CLOSE request has failed for
the member specified with the return code specified.

User response: See return codes for the LIBRM
CLOSE macro in the z/VSE: System Macros Reference.

ASMKLK007S LIBRM STATE for CATALOG library
failed RC=retcode

Explanation: An error has occurred in locating the
phase catalog library.

User response: Ensure a // LIBDEF PHASE,CATALOG=
statement has been coded. If the statement has been
provided then check the return codes for the LIBRM
STATE macro in the z/VSE: System Macros Reference.

IDF Language Support messages

ASMLVR001E Keyword missing

Explanation: One or more extra keywords were
expected, but were not present.

User response: Change the command specification to
add the appropriate keywords.

ASMLVR002E Keyword too long, "txt1"

Explanation: txt1 is not recognized as a valid
keyword. It exceeds the maximum length of a valid
keyword, and may be spelled incorrectly.

User response: Change the command specification to
use the appropriate keyword.

ASMLVR003E Keyword not recognized, "txt1"

Explanation: txt1 is not recognized as a valid
keyword.

User response: Change the command specification to
use the appropriate keyword.

ASMLVR004E Keyword not valid in this context,
"txt1"

Explanation: txt1 is recognized as a valid keyword,
but is not valid in the context in which it has been
specified.

For example, the command SHOW BOTH is valid, but
the command SHOW SHOW will produce this
message.

User response: Change the command specification to
use the appropriate keyword.

ASMLVR005E Additional parameters expected

Explanation: One or more extra parameters were
expected, but were not present.

ASMKLK000W • ASMLVR005E

264 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

User response: Change the command specification to
add the appropriate parameters.

ASMLVR006E Extraneous keyword, "txt1"

Explanation: The keyword txt1 was specified, but no
keyword was expected in this context.

User response: Correct the command specification to
eliminate any extraneous keywords.

ASMLVR010I txt1

ASMLVR011I One of: txt1

Explanation: The "?" keyword was specified in the
command, to request command prompting. The list of
valid keywords in this context are shown in this
message.

User response: Change the command specification to
use the appropriate keyword in place of the "?"
keyword.

ASMLVR012I Debug mode is now txt1

Explanation: A LANGUAGE DEBUG command has
been successfully executed. The resulting debug options
are shown in this message.

User response: None

ASMLVR013I txt1 subsystem not available in this
version of txt2

ASMLVR020E Unknown color, "txt1"

Explanation: The indicated keyword txt1 is not
recognized as a valid LANGUAGE COLOR keyword.

User response: Change the command specification to
use the appropriate keyword.

ASMLVR030E No Extract data is currently loaded

Explanation: A command has been executed which
required that ASMLANGX extract data be previously
loaded with LANGUAGE LOAD. None was present, so
the command did not complete successfully.

User response: Load the appropriate ASMLANGX
extract data files.

ASMLVR031E Extract file filename not LOADed

Explanation: An attempt was made to reference
ASMLANGX extract data file filename. This file has not
yet been loaded with LANGUAGE LOAD.

User response: Load the ASMLANGX extract data file,
if required.

ASMLVR032E Module txt1 not known to txt2

Explanation: An attempt was made to reference
module txt1, which has not been defined to IDF.

User response: Define the module to IDF using the
MODULE command.

ASMLVR033E The PSW indicates an address which
is not within any known statement.

ASMLVR034E REXX variable not found: var1

Explanation: A command has attempted to access the
specified REXX variable, but it was not present.

User response: None

ASMLVR035E Unable to update REXX variable: var1

Explanation: A command has attempted to update the
specified REXX variable, but was unsuccessful.

User response: Ensure sufficient virtual storage is
present

ASMLVR036E Stem ".0" value not positive decimal
number: txt1

Explanation: A command has attempted to access the
specified REXX stemmed array variable, but the value
of the "stemname.0" control variable was not a positive
decimal number.

User response: None

ASMLVR037E REXX variable data length dec1
exceeds limit of dec2 bytes: var3

Explanation: A command has attempted to access the
specified REXX variable, but the contents were too
large to fit in the data buffer.

User response: None

ASMLVR040I Variable separator blank line will be
txt1

ASMLVR041I Variable location audit will be txt1

ASMLVR042I txt1 variable declaration information
will be txt2

ASMLVR043I Variable information will be displayed
in txt1 format

ASMLVR006E • ASMLVR043I

Appendix B. Diagnostic messages 265

ASMLVR050I Structure major component data will
be txt1

ASMLVR051I LSM window detail level is now "txt1,
txt2"

ASMLVR052E Invalid LSM window detail level,
"txt1"

ASMLVR053I Structure pad variable names will be
txt1

ASMLVR060E No Storage Allocation Map
information is available

Explanation: A STOREMAP command was executed,
but no Storage Allocation Map information was
available for display.

User response: None

ASMLVR061E Storage Allocation Map error: txt1

Explanation: The specified error occurred while
building the Storage Allocation Map information
display. STOREMAP processing has terminated.

User response: None

ASMLVR065E No Task information is available

Explanation: A TASKS command was executed, but
no information about tasks was available for display.

User response: None

ASMLVR066E Task information error: txt1

Explanation: The specified error occurred while
building the Task information display. TASKS
processing has terminated.

User response: None

ASMLVR070E No Global Storage stems are currently
defined

Explanation: A command has been executed which
required that Global Storage stems be defined
previously by SET GLOBAL commands. None was
present, so the command did not complete successfully.

User response: None

ASMLVR072W Global Storage stem not found: txt1

Explanation: A command has attempted to access the
specified Global Storage stem, but it was not defined.

User response: Create the Global Storage stem with
the SET GLOBAL command.

ASMLVR080I txt1 checking is now txt2

ASMLVR090I LSM Status/Settings txt1

ASMLVR100E No variable names match pattern: txt1

ASMLVR110E No LongName defined for txt1 in
Module "txt2"

ASMLVR120I Current txt1 display format is "txt2"

ASMLVR121E Unknown txt1 display format, "txt2"

ASMLVR122E Display format "txt1" not valid for txt2

ASMLVR123E Multiple variables not valid txt1

ASMLVR130I Source at txt1 txt2 shown

ASMLVR131W Unable to perform txt1 command

ASMLVR132E Function not valid if source is
suppressed

ASMLVR140I Target string displayed at top of
DISASM area

ASMLVR141W Target not found

ASMLVR142E Search not possible, since no source
information is available

ASMLVR143E Search parameter not recognized: txt1

ASMLVR144E Search string missing or all-blank

ASMLVR145E Unexpected characters follow ending
delimiter

ASMLVR146I Unused extract data memory blocks
txt1

ASMLVR147I Unused Global Storage memory
blocks txt1

ASMLVR148W Autowrap performed to display
target string.

ASMLVR050I • ASMLVR148W

266 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMLVR150I Display now limited to source code
only

ASMLVR151I Display of source code disabled

ASMLVR152I Interspersed source/disassembly now
displayed

ASMLVR153I txt1 will be txt2

ASMLVR154I txt1 generating code will be shown

ASMLVR155I Display reset to show all program
information

ASMLVR160I LSM window will scroll by txt1 txt2

ASMLVR161I LSM window scrolling disabled

ASMLVR162E Invalid LSM window scroll amount,
"txt1"

ASMLVR170I LSM REXX stem variable name is now
"txt1"

ASMLVR171I LSM REXX stem limit is now "dec1"

ASMLVR172E LSM REXX stem limit dec1 is outside
of range dec2 to dec3

ASMLVR173E LSM REXX stem index limit reached
during EXTRACT

ASMLVR180I Maximum Caller level is now dec1

ASMLVR181I CALLERS Save Area registers txt1

ASMLVR182E Caller level dec1 is outside of range
dec2 to dec3

ASMLVR183E Unable to access Caller level txt1

ASMLVR190I XPATh reset to default value of "txt1"

ASMLVR191I New XPATh accepted. Review using
"LAN OPTIONS"

ASMLVR192E Invalid character "txt1" in XPATH
entry txt2. XPATH changes ignored

ASMLVR193E Maximum number of XPATH entries
(txt1) exceeded. XPATH changes ignored

ASMLVR200E Var is not txt1: txt2

ASMLVR201E Invalid expression syntax: txt1

ASMLVR202E Invalid txt2 in expression: txt1

ASMLVR203E Missing txt2 in expression: txt1

ASMLVR204E txt2 invalid as operand: txt1

ASMLVR205E txt2 occurred while txt3 in expression:
txt1

ASMLVR206E Expression txt2 not yet supported: txt1

ASMLVR210E Unknown characters within
expression: txt1

ASMLVR211E Extract data is incomplete for: txt1

ASMLVR212E Structure declaration invalid: txt1

ASMLVR213E Array declaration invalid: txt1

ASMLVR214E Internal error processing expression:
txt1

ASMLVR215E Insufficient free storage to process
expression

ASMLVR220E Error: Var storage at X'txt1' not
accessible: txt2

ASMLVR221E Automatic storage (DSA) base is R0 -
invalid: txt1

ASMLVR222W Warning: Value of txt1 is txt2: txt3

ASMLVR223E Var is a constant but value not
extracted: txt1

ASMLVR150I • ASMLVR223E

Appendix B. Diagnostic messages 267

ASMLVR224W Warning: Bdy(txt1) expected for txt2:
txt3

ASMLVR225W Warning: Optimized var txt1txt2

ASMLVR226E Error: Optimized var txt1txt2

ASMLVR227E Error: Register txt1 is invalid: txt2

ASMLVR230E No variable name supplied

ASMLVR231E Variable name exceeds dec1 chars, or
excess data follows variable name

ASMLVR232E Variable unknown in current compile
data: txt1

ASMLVR233E Missing variable name in
dot-qualified expression: txt1

ASMLVR234E Ambiguous in current scope;
dot-qualify: txt1

ASMLVR235E Not component of indicated structure:
txt1

ASMLVR236E Variable unknown in current block:
txt1

ASMLVR240E Locating expression required, var is
BASED(*): txt1

ASMLVR241E Var neither based nor part of based
structure: txt1

ASMLVR242E Non-pointer specified in locator
expression: txt1

ASMLVR243E Pointer name missing from locating
expression

ASMLVR244E Excess locating expressions, maximum
allowed is dec1

ASMLVR250E String is not multi-dimensioned array:
txt1

ASMLVR251W Subscript txt1 for array dimension
txt2 assumed: txt3

ASMLVR252W Extraneous array subscript txt1
ignored: txt2

ASMLVR253E Subscripted variable not array or
string: txt1

ASMLVR254E Substring valid only for string
variables: txt1

ASMLVR255E txt1 dec2 out of range dec3 to dec4 for:
txt5

ASMLVR256E Wrap-around substring dec1:dec2 not
allowed: txt3

ASMLVR257E txt1 dec2 not positive: txt3

ASMLVR258E txt1 dec2 is below lower bound of dec3
for: txt4

ASMLVR270E Function argument cannot be
evaluated: txt1

ASMLVR271E Maximum of dec2 function
argumenttxt3 exceeded: txt1

ASMLVR272E Function argument was omitted: txt1

ASMLVR273E Unable to resolve to storage address:
txt1

ASMLVR274E Recursive txt1 ADDR() is not allowed:
txt2

ASMLVR300E Read/Only storage at X'txt1' - changes
ignored, display line dec2

ASMLVR310E All-blank data entered on display line
dec1

ASMLVR311E Value entered exceeds maximum
allowed by declared precision, display
line dec1

ASMLVR224W • ASMLVR311E

268 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMLVR312E UnSigned value txt1 not be negative,
display line dec2

ASMLVR313E Length entered exceeds declared
string length, display line dec1

ASMLVR320E Non-decimal character entered on
display line dec1, col dec2: txt3

ASMLVR321E Invalid Float syntax detected on
display line dec1, col dec2: txt3

ASMLVR322E Non-hexadecimal character entered on
display line dec1, col dec2: txt3

ASMLVR323E Non-binary character entered on
display line dec1, col dec2: txt3

ASMLVR324E Extraneous bits in last hex character
ignored, display line dec1

ASMLVR325E Non-displayable data entered on
display line dec1, col dec2: txt3

ASMLVR326E Non-ASCII character entered on
display line dec1, col dec2: txt3

ASMLVR400E Extra right parenthesis detected

ASMLVR410E Extract file not found: txt1

ASMLVR411E Extract file DD not allocated: txt1

ASMLVR412E Extract file already LANg LOADed:
txt1

ASMLVR413E LongName extract data txt1 loaded for
Module "txt2"

ASMLVR414E Insufficient free storage to LOAD: txt1

ASMLVR420E Extract file version (txt1) higher than
LSM supports (txt2)

ASMLVR421S Extract file load not successful
(RC=dec1)

ASMLVR422E Extract file format invalid: txt1

ASMLVR423E Extract file contains invalid records
(RC=dec1)

ASMLVR424E Extract file contains NO supported
records

ASMLVR425E Unable to locate txt1 txt2 referenced
in extract file

ASMLVR426W Warning: CSECT txt1 length is X'txt2
bytes, X'txt3' expected

ASMLVR312E • ASMLVR426W

Appendix B. Diagnostic messages 269

IDF base debugger messages

ASMMAI001W Operation exception (program check
code X'01')

ASMMAI002W Privileged operation exception
(program check code X'02')

ASMMAI003W Execute exception (program check
code X'03')

ASMMAI004W Protection exception (program check
code X'04')

ASMMAI005W Addressing exception (program
check code X'05')

ASMMAI006W Specification exception (program
check code X'06')

ASMMAI007W Data exception (program check code
X'07')

ASMMAI008W Fixed-point overflow exception
(program check code X'08')

ASMMAI009W Fixed-point divide exception
(program check code X'09')

ASMMAI010W Decimal overflow exception
(program check code X'0A')

ASMMAI011W Decimal divide exception (program
check code X'0B')

ASMMAI012W Exponent overflow exception
(program check code X'0C')

ASMMAI013W Exponent underflow exception
(program check code X'0D')

ASMMAI014W Significance exception (program
check code X'0E')

ASMMAI015W Floating-point divide exception
(program check code X'0F')

Explanation: IDF received control as a result of the
exception which occurred during user program
execution.

User response: Determine the cause of the exception,
and perform any required corrective action.

The PSW and register values when the exception
occurred are available from the Current Registers
window.

ASMMAI016W Target program ABENDed; code

Explanation: IDF received control as a result of an
ABEND which occurred during user program
execution.

User response: Determine the cause of the ABEND,
and perform any required corrective action.

More diagnostic information is supplied if available:
v For system ABENDs, the system code value is shown

in hexadecimal. If the reason code value is available,
it is shown in hexadecimal.

v For user ABENDs, the user code value is shown in
decimal. If the reason code value is available, it is
shown in decimal.

v For other ABENDs, the ABEND code is shown in
decimal.

The PSW and register values when the ABEND
occurred are available from the Current Registers
window.

ASMMAI017I SVC instruction trapped

Explanation: SVC instruction trapping has been
enabled on CMS using the SET SVC Y command, or by
changing the SVC setting in the Breakpoint window to
"Y".

Subsequently, an SVC instruction has been executed in
a user program, and IDF has received control.

User response: None

ASMMAI018I BREAK point has been reached but
NOT executed

Explanation: An instruction is about to be executed
for which an IDF breakpoint exists. IDF has received
control.

User response: None

ASMMAI019I Target program has completed and
returned control

Explanation: The initial target program has completed
execution. IDF has received control.

User response: None

ASMMAI020W Program exception, code X'xxxx'

Explanation: IDF received control as a result of the
exception which occurred during user program
execution.

ASMMAI001W • ASMMAI020W

270 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

User response: Determine the type and cause of the
exception, and perform any required corrective action.

The PSW and register values when the exception
occurred are available from the Current Registers
window.

ASMMAI021I PER storage alter event by LAST
EXECUTED instruction, at addr

Explanation: IDF received control as a result of the
execution of the previous instruction. This instruction
had altered a storage location for which an AdStop
storage alteration stop range was active.

User response: None

ASMMAI022I PER register alter event by LAST
EXECUTED instruction, at addr

Explanation: IDF received control as a result of the
execution of the previous instruction. This instruction
had altered a general purpose register (GPR) for which
a RegStop register alteration stop was active.

User response: None

ASMMAI023E Requested function is not supported
in this environment

Explanation: IDF does not support the requested
function in this execution environment.

User response: None

ASMMAI025W Warning: Next instruction is outside
of target program's boundaries

ASMMAI026W Warning: Can't insert BREAK in R/O
storage; IDF may lose control

Explanation: IDF attempted to modify the user
program instruction to establish a breakpoint, but was
not able to do so as the instruction address is within
Read/Only storage.

User response: Establish a suitable breakpoint at an
alternate location which can be modified by IDF, and
which will be executed as part of the current execution
path.

If a suitable alternative location is not available, you
must provide a debug execution environment in which
this program is in Read/Write storage.

ASMMAI027W No more memory available for PATH
function; recording disabled

Explanation: There is insufficient free virtual storage
available to allow IDF to record PATH information.

User response: Obtain extra virtual storage.

ASMMAI028E Function not valid when PER is
enabled

Explanation: This function is incompatible with the
CMS Program Event Recording (PER) feature.

User response: If the function is required, use IDF
with PER disabled.

ASMMAI029I Following: txt1

ASMMAI030W FOLLOW address above virtual
storage maximum; FOLLOW is now OFF

ASMMAI032W Logging of changes to control
registers not supported

ASMMAI033E IDF initialization failed. Check your
environment, or if IDF ABENDed,
Logoff, Logon and try again

ASMMAI034E IDF is already active

ASMMAI035E USER area program not valid in
SUBSET mode

ASMMAI037E Unable to load target program into
user/trans area

ASMMAI038E SCBLOCK length value does not
match expected value

Explanation: IDF has discovered that its subcommand
environment has been damaged. This checking is being
performed before executing a REXX exit routine, with
the CKSUBCM option specified.

IDF was unable to execute the REXX exit routine for
this event, but will try again at the next event.

User response: None.

ASMMAI039E SCBLOCK origin value does not
match expected value

Explanation: IDF has discovered that its subcommand
environment has been damaged. This checking is being
performed before executing a REXX exit routine, with
the CKSUBCM option specified.

IDF was unable to execute the REXX exit routine for
this event, but will try again at the next event.

User response: None.

ASMMAI021I • ASMMAI039E

Appendix B. Diagnostic messages 271

ASMMAI040E Nucleus extension is not loaded

Explanation: IDF was invoked with the NUCEXT
option, but the target program is not currently present
in storage as a CMS Nucleus extension.

IDF processing is terminated.

User response: Use the CMS NUCXLOAD command
to load the target program as a CMS Nucleus
extension, then invoke IDF.

ASMMAI041E TRANS and NUCEXT options are
mutually exclusive

Explanation: IDF was invoked with both the TRANS
and NUCEXT options specified. This is not a valid
combination.

IDF processing is terminated.

User response: Correct the options specification.

ASMMAI042E NUCEXT specified but file built as
transient

Explanation: IDF was invoked with the NUCEXT
option specified, but the MODULE file has only one
record and is a transient.

IDF processing is terminated.

User response: Correct the options specification.

ASMMAI044E Map origin does not match origin in
executable file

Explanation:

User response:

ASMMAI045E MODULE file transient; map/options
indicate user

Explanation: IDF was invoked without the TRANS
option, but the MODULE file has only one record and
is a transient.

IDF processing is terminated.

User response: Correct the options specification.

ASMMAI046E Map/options indicate transient,
MODULE file does not

Explanation: IDF was invoked with the TRANS
option, but the MODULE file has more than one record
and is not a transient.

IDF processing is terminated.

User response: Correct the options specification.

ASMMAI048E Option not recognized or exceeds 8
characters: txt1

Explanation:

User response:

ASMMAI049E No module name specified

ASMMAI050E "txt1" module not found

ASMMAI051E Module name exceeds 8 characters in
length

ASMMAI057E COMMAND option specified, but no
command was provided

ASMMAI058E Option invalid in this environment:
txt1

Explanation: The position of the cursor on the IDF
display is not suitable for use as an implicit operand.

User response: Supply an explicit operand, or move
the cursor to an acceptable location

ASMMAI060E Unable to load ASMADOP

Explanation: An error occurred when attempting to
load the module ASMADOP.

User response: Ensure the module ASMADOP is
available to IDF.

ASMMAI061E SELFNUCX specified, but no start
symbol provided

ASMMAI062E Start symbol specified on SELFNUCX
is not defined: txt1

ASMMAI064E Specified file mode is not valid

ASMMAI065E Not enough free storage; increase
virtual memory size and try again

ASMMAI066E Specified PROFILE not found:fn

ASMMAI067E Last option is incomplete

ASMMAI068E Unable to create subcommand
environment

ASMMAI040E • ASMMAI068E

272 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMMAI069E Unable to load module "txt1" via OS
LOAD

ASMMAI070E IDF is not supported in this
environment; RC=dec1

ASMMAI071E Terminal not connected at specified
address for txt1; RC=dec2

ASMMAI073E Error in screen manager txt1 call;
RC=dec2, Diagnostic info: txt3

ASMMAI074E Error reading symbol file fn ft;
RC=dec2

ASMMAI075E Error reading module file fn ft;
RC=dec2

ASMMAI080E SCBLOCK value: txt1 Expected value:
txt2

ASMMAI081E SCBLOCK value: txt1 Expected value:
txt2 SELFNUCX offset: txt3

ASMMAI083E Specified address does not contain a
valid instruction

ASMMAI084W Main() BREAK adjusted to txt1

ASMMAI085E Cursor position not valid for
supplying an implicit operand

Explanation: The position of the cursor on the IDF
display is not suitable for use as an implicit operand.

User response: Supply an explicit operand, or move
the cursor to an acceptable location

ASMMAI087I BREAK set at txt1

ASMMAI088I BREAK cleared at txt1

ASMMAI089E No BREAK table entries available;
clear one and try again

ASMMAI090W BREAK already set at txt1

ASMMAI091W Warning: Next instruction is a
branch-to-here

ASMMAI095E No ADSTOP table entries available;
clear one and try again

ASMMAI096E ADSTOP already set at txt1

ASMMAI097E FFFFFFFF is not a valid ADSTOP
address

ASMMAI098I Start of ADSTOP range dec1 set to txt2

ASMMAI100I End of ADSTOP range dec1 set to txt2

ASMMAI102E Minimum 22 line screen depth
required to run IDF

ASMMAI103E SKIPSTEPs may be set from
command line or disassembly window
only

ASMMAI104E No SKIPSTEP table entries available;
clear one and try again

ASMMAI105I SKIPSTEP set at txt1

ASMMAI106I SKIPSTEP cleared at txt1

ASMMAI107E Retry count exceeded, txt1 during txt2
operation: txt3

ASMMAI108W Segment translation exception
(program check code X'10')

Explanation: IDF received control as a result of the
exception which occurred during user program
execution.

User response: Determine the cause of the exception,
and perform any required corrective action.

The PSW and register values when the exception
occurred are available from the Current Registers
window.

ASMMAI109W Page translation exception (program
check code X'11')

Explanation: IDF received control as a result of the
exception which occurred during user program
execution.

User response: Determine the cause of the exception,
and perform any required corrective action.

The PSW and register values when the exception
occurred are available from the Current Registers
window.

ASMMAI069E • ASMMAI109W

Appendix B. Diagnostic messages 273

ASMMAI112W REPLAY cancelled; terminating as
I/O error 99

ASMMAI113A Playback ended; press ENTER to
continue

ASMMAI114E Error reading recorded data; RC=dec1;
terminating as I/O error 99

ASMMAI115E Unknown character entered in txt1

ASMMAI116E Address specified for PSW was not
on halfword boundary

ASMMAI117E Address specified for PSW was
outside of module

ASMMAI118E Wait-state and Mode PSW bits may
not be changed

ASMMAI119E Attempt to modify IDF code; changes
discarded from txt2

ASMMAI120E Non-hex character in hex field;
changes discarded from txt2

ASMMAI121W Register/PSW display locked out
pending execution of startup command

ASMMAI126E BREAKs may be cleared on this
panel, but not changed

Explanation: An attempt has been made to alter either
the address, commands, or conditions associated with a
breakpoint or watchpoint using typeover modification
on the Break window. The only supported typeover
modification is the clearing of a breakpoint by
overtyping it with blanks.

User response: Use the BREAK command to alter
breakpoint address or command values. Use the
WATCH command to alter watchpoint address,
command, or condition values.

ASMMAI127E ADSTOP ranges may be cleared on
this panel, but not changed

Explanation: An attempt has been made to alter an
AdStop address range using typeover modification on
the AdStops window. The only supported typeover
modification is the elimination of an AdStop range by
overtyping it with blanks.

User response: Use the ADSTOP command to alter
the AdStop address range.

ASMMAI128E RLOG ended because command
caused nonzero return code or alarm;
RC=dec1

ASMMAI129E Undefined PF/PA key

ASMMAI134I Oldest item retrieved; next RETRIEVE
will wrap to most recent

ASMMAI135E Symbol is undefined

ASMMAI136E Symbol is ambiguous; CSECT
qualification is required

ASMMAI137E Expression contains unknown syntax

ASMMAI138E SUBSET is not valid when debugging
a transient

Explanation: The SUBSET command is disabled when
the target program resides in the CMS transient
program area, since the SUBSET command execution
causes the target program storage to be overlaid.

User response: Exit the current IDF debug session
before executing the command.

ASMMAI139I Returned from saved screen image

ASMMAI140E No screen image has been saved

ASMMAI141E SWAP function is not enabled

ASMMAI142A Press QUIT again to return to txt1

Explanation: IDF protects you from accidentally
terminating your debug session by requiring
confirmation if the QUIT PF key is pressed.

User response: Press QUIT again to exit IDF, or
execute any other command to continue this IDF
session.

ASMMAI143E The exit routine is compiled-code;
XEDEXIT is not relevant

Explanation: The CMPEXIT option indicates that the
exit routine is a compiled-code routine, not a REXX exit
routine. The XEDEXIT command is only used to invoke
XEDIT to edit an interpreted REXX exit routine.

User response: Terminate your IDF session and
modify your compiled-code exit routine through other
means.

ASMMAI112W • ASMMAI143E

274 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMMAI144I Storage pointed to by indicated field
is now shown

Explanation: The IDF display has been successfully
updated to show storage at the address indicated by
the cursor.

User response: None

ASMMAI145E No BREAK address specified

Explanation: The breakpoint address value is required,
but was not specified.

User response: Specify a breakpoint address
expression

ASMMAI146E Non-ASCII character in text field;
changes discarded from txt1

Explanation: The ASCII option is ON, so that the text
field uses an ASCII data interpretation. An attempt was
made to modify one or more text field characters to
values which are not valid ASCII characters. Any
modifications of the text field data have been
discarded.

User response: Retry using valid ASCII characters, or
modify the storage location by typeover of the
hexadecimal portion of the DUMP data display

ASMMAI148W Display is at end of virtual storage

ASMMAI149W Display is at location zero

ASMMAI150E Function has no meaning in this
display mode

ASMMAI151E Function is not valid while PER is
disabled

Explanation: This function requires the CMS Program
Event Recording (PER) feature.

User response: If the function is required, enable the
IDF PER exploitation using the SET PER Y command,
or by changing the PER setting in the Breakpoint
window to "Y".

ASMMAI152W PATH option is implied and has
been set ON

ASMMAI153I Storage containing the specified data
is now shown

ASMMAI154W Specified data does not exist at
higher addresses

ASMMAI155W Data not found within target
program; repeat to continue search

ASMMAI156E Search argument missing or contains
unknown syntax

ASMMAI157E Hexadecimal string must contain even
number of digits

ASMMAI158E IDF cannot infer an unambiguous
starting location for the search

Explanation: A SEARCH command has been issued
without an explicit window specification, or cursor
indication of the window at whose start location the
search is to begin.

Both Dump and Disassembly windows are open, but
each has a different start location. IDF is unable to infer
which start address to use in this case.

User response: Specify an explicit window
specification or place the cursor in the window with
the desired search starting location.

ASMMAI159I Exit exec is now ACTIVE

Explanation: Exit routine processing has been enabled.
The exit exec will now receive control when an event
occurs.

User response: None

ASMMAI160I Exit exec is now disabled

Explanation: Exit routine processing has been
disabled. The exit exec will no longer receive control
when an event occurs.

User response: None

ASMMAI161E Command not recognized

Explanation: The keyword is not recognized as a valid
command.

User response: Change the command specification to
use the appropriate keyword.

ASMMAI162E Missing keyword

Explanation: One or more extra keywords were
expected, but were not present.

User response: Change the command specification to
add the appropriate keywords.

ASMMAI144I • ASMMAI162E

Appendix B. Diagnostic messages 275

ASMMAI163E Keyword too long

Explanation: The keyword is not recognized as a valid
keyword. It exceeds the maximum length of a valid
keyword, and may be spelled incorrectly.

User response: Change the command specification to
use the appropriate keyword.

ASMMAI164E Keyword not recognized

Explanation: The keyword is not recognized as a valid
keyword.

User response: Change the command specification to
use the appropriate keyword.

ASMMAI165E Arguments not recognized

Explanation: One or more arguments were not
recognized as valid for this command.

User response: Change the command specification to
use the appropriate arguments.

ASMMAI166E Conditions do not permit successful
execution of the given command

ASMMAI167W STEP function locked out pending
execution of startup command

ASMMAI168W Register/PSW display locked out
pending execution of startup command

ASMMAI169E PFK may not be set to MACRO
without macro name

ASMMAI172E Address missing or does not contain a
valid instruction

ASMMAI173I Storage key for address txt1 is X'txt2'

ASMMAI176E Specified address txt1 exceeds virtual
storage size txt2

ASMMAI178I Offset reset to txt1

ASMMAI179I Current offset is txt1

ASMMAI180I Instructions executed since last
ICOUNT command: dec1

ASMMAI181E Macro not found: txt1

ASMMAI182E SET command RC=dec1

ASMMAI183E Exit macro not found: txt1

ASMMAI185E txt1 is not supported by the
PSWSTEAL command

ASMMAI187E Maximum number of PSWSTEALs
already set

ASMMAI188W PER disabled

Explanation: IDF exploitation of the CMS Program
Event Recording (PER) feature has been disabled.

User response: None

ASMMAI189I PSWSTEAL set at txt1

ASMMAI190E The specified address is in
nonexistent or read/only storage

ASMMAI191I PSWSTEAL cleared at txt1

ASMMAI192E BREAKs cannot be set within the
active copy of IDF

ASMMAI193E Replacement PSW is not valid

ASMMAI194I IDF interrupt save area is 16 bytes at
hex location txt2

ASMMAI195E Wait-state bit may not be set

ASMMAI196I txt1 has been set to txt2

ASMMAI197E No address provided

ASMMAI198I Interrupt Save Area modified; breakin
recognized

ASMMAI199E Macro RC=dec1

ASMMAI200E LOAD RC=dec1

ASMMAI163E • ASMMAI200E

276 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMMAI201E RLOG command not allowed while
CMDLOG option is set

ASMMAI202E Command file "IDF CMDLOG" not
found on any disk

Explanation: IDF was invoked with the RLOG
parameter, but a log file was not found.

User response: Create a log file before using the
RLOG parameter.

ASMMAI203E Error attempting to read "IDF
CMDLOG"; RC=dec2

ASMMAI204I dec1commands successfully executed;
stopped after first "txt2"

ASMMAI205I RLOG terminated by normal
end-of-file on "IDF CMDLOG"

Explanation: You issued an RLOG command, but
there were no more log records on the log file.

User response: None.

ASMMAI207I Command logging is now active

Explanation: The IDF command logging is now
writing commands to the log file.

User response: None.

ASMMAI208E "Old" data does not match the
specified value

ASMMAI209E Hex data contains odd number of
digits or invalid hex digit

ASMMAI210E Missing "/", type not X/C, or
mismatching field sizes

ASMMAI211E Function is only valid when PATH
option is on

ASMMAI212E No history available yet

ASMMAI213W No more history information
available in that direction

ASMMAI214E PER bit in PSW may not be changed;
when PER=Y, IDF controls PER

ASMMAI215E Attempt to access or modify
nonexistent or read/only storage

ASMMAI216E WATCH comparator not one of: txt1

ASMMAI217E WATCH instruction missing / not one
of:txt1

ASMMAI218E WATCH instruction operands are
missing

ASMMAI219I WATCH condition: txt1

ASMMAI221W Warning: WATCH operand address is
not valid; unable to evaluate

ASMMAI222E Second operand has incorrect length
for the specified opcode

ASMMAI223E Specified window number is invalid

ASMMAI224E Specified window number is not the
right type for the command

ASMMAI225E No more windows can be opened

ASMMAI226E Window type invalid for OPEN

ASMMAI227W Attention interrupt trapped

ASMMAI228I Extract file automatically loaded for
CSECT txt1

ASMMAI229S IDF txt2 support component failed to
initialize; RC=dec2

Explanation: This message indicates that a required
component failed initialization.

User response: Ensure invocation parameters are
correctly specified, or determine reason for failure (eg,
check the system log for accompanying messages). If an
accompanying message IFA104I is issued, please refer
to z/OS Planning for Installation for product enablement.

ASMMAI237E No module name specified

ASMMAI238E Module name too long

ASMMAI201E • ASMMAI238E

Appendix B. Diagnostic messages 277

ASMMAI239E Macro name too long

ASMMAI241E Module name not valid

ASMMAI242E Option value must be ON or OFF or
cleared

ASMMAI243E A Deferred BREAK for module txt1
failed to install; RC=dec2

ASMMAI245I Deferred BREAK set at txt1

ASMMAI246I Deferred BREAK cleared at txt1

ASMMAI247W Deferred BREAK already set for txt1

ASMMAI248I Module txt1 loaded and Deferred
BREAKs installed

ASMMAI250E Deferred BREAKs must be set by the
DBREAK command

ASMMAI252E SVC 97 used; only the address and
ASC bits of PSW may be modified

ASMMAI253E PROGCK supports only decimal
codes 1 through 15

ASMMAI254E Invalid number

ASMMAI255E Language support window not open

ASMMAI256E Extraneous parameters

Explanation: One or more extraneous parameters was
encountered during processing of the IDF invocation
parameters.

IDF processing is terminated.

User response: Correct the invocation parameters
specification.

ASMMAI257W Target program check (code X'txt1');
intercepted by ESPIE

ASMMAI262W Program apparently self-modifying;
IDF BREAK instruction overlaid

ASMMAI264E Target program not yet loaded;
command rejected

ASMMAI265E Too late for "txt1" command

Explanation: The command cannot be requested after
IDF has started.

User response: Include the command as an invocation
parameter, or in the PROFILE macro.

ASMMAI266E Conflicting options specified

ASMMAI272I Value is txt1 *

ASMMAI275E AMODE option cannot be set off

Explanation: The SET OPTION OFF command was
used to attempt to turn off any of the AMODE options
AMODE24, AMODE31, or AMODE64. It is not possible
to turn these options off.

User response: Use the SET OPTION ON command to
change the AMODE to the required setting.

ASMMAI500E LOSTERM for LU luid - reason code
codex

Explanation: LOSTERM was driven for the specified
VTAM Logical Unit name luid with the reason code
code (in hexadecimal).

User response: Determine from the reason code, why
the session with the LU was terminated and correct
before resubmitting IDF job.

ASMMAI501E function error for LU luid - RTNCD
rtncdx FDB2 fdb2x

Explanation: The RPL-based function function failed
for the specified VTAM Logical Unit name luid with the
indicated RTNCD and FDB2 fields from the RPL.

User response: Determine from the reported RPL
feedback information, why the function with the LU
failed and correct before resubmitting IDF job.

ASMMAI502E ACB error for APPLID applid -
ACBERFLG codex

Explanation: An OPEN or CLOSE for the VTAM
application ID applid failed with the indicated
ACBERFLG field from the ACB. If the ACBERFLG code
is x'5A', IDF attempts OPEN for up to 10 successive
application IDs (of the form ASMTLnnn) before issuing
the message and hence the reported applid may be one
that is not actually defined.

User response: Determine from the reported
ACBERFLG, why the OPEN or CLOSE failed.

ASMMAI239E • ASMMAI502E

278 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ADATA extraction utility messages

ASMXMA001I ASMLANGX Version 1 (Release 4)

Explanation: This message shows the ASMLANGX
program identification, version, and release date.

This message, as well as most other ASMLANGX
messages, is normally only displayed if the
ASMLANGX LOUD option is specified.

User response: None

ASMXMA002I Output file: fn ft fm

Explanation: This message identifies the file to which
the extract data information will be written by
ASMLANGX.
v On CMS, this is a standard CMS file identifier
v On z/OS, this is mapped as follows:

CMS Equivalent on TSO
fn PDS member name (ignored if using

sequential file)
ft DDNAME, which in turn points to the TSO

data set name
fm Not used on TSO

User response: None

ASMXMA003I ... scanning txt1

Explanation: This message indicates that the
information specified in txt1 is being read from the
associated file and processed.

User response: None

ASMXMA004I ... checking txt1

Explanation: This message indicates that the
information specified in txt1 is checked for consistency.

User response: None

ASMXMA005I txt1 Pass dec2 processing begins

Explanation: This message indicates pass dec2 of the
multi-pass processing task specified in txt1 is now
being performed.

User response: None

ASMXMA006I Post-processing begins

Explanation: This message indicates that all the
needed information has been read from the associated
files, and post-processing of this information is being
performed.

User response: None

ASMXMA007I ... matching txt1

Explanation: This message indicates that the
information specified in txt1 is now being correlated.

User response: None

ASMXMA008I ... performing txt1

Explanation: This message indicates that the
processing step specified in txt1 is now being
performed.

User response: None

ASMXMA010I txt1 records scanned: dec2

Explanation: This message indicates that dec2 records
were read from the txt1 file when the current compile
unit was processed by ASMLANGX.

User response: None

ASMXMA011I ...Symbols txt1.. dec2

Explanation: This message indicates that the current
compile unit contained dec2 symbols with
characteristics of type txt1

User response: None

ASMXMA013I ...Total symbols: dec1

Explanation: This message indicates that the current
compile unit contained dec1 symbols.

User response: None

ASMXMA014I Records written to output file: dec1

Explanation: This message shows the number of
records of extract data information which were written
to the output file.

User response: None

ASMXMA015I Operation completed for this compile
unit

Explanation: Processing has completed for the current
compile unit. If more compile units are present,
processing continues.

User response: None

ASMXMA016I txt1 txt2

Explanation: This message identifies the input files
which were processed by ASMLANGX

The txt1 field is normally "Input file:" or "Input files:".

ASMXMA001I • ASMXMA016I

Appendix B. Diagnostic messages 279

See the explanation for message ASMX002I for a full
description of the txt2 information.

User response: None

ASMXMA017I Operation completed for this extract
file

Explanation: This is the last message to be displayed
by ASMLANGX, and indicates that processing has
completed for this ASMLANGX extract data file.

User response: None

ASMXMA018I txt1 bytes scanned: dec2

Explanation: This message indicates that dec2 bytes of
data were read from the txt1 file when the current
compile unit was processed by ASMLANGX.

User response: None

ASMXMA050W Argument missing for txt1 option.
txt2

Explanation: The argument for ASMLANGX option
txt1 was not found during processing of the
ASMLANGX invocation parameters.

The default argument for the txt1 option is assumed.

User response: Specify the missing argument, or
remove the option from the invocation parameters.

ASMXMA051S Argument/Option too long, "txt1"

Explanation: The invocation parameter txt1 is not
recognized as a valid ASMLANGX argument (or
option). It exceeds the maximum length of a valid
argument (or option), and may be spelled incorrectly.

ASMLANGX processing is terminated.

User response: Correct the invocation parameter.

ASMXMA052S Argument/Option not recognized,
"txt1"

Explanation: The invocation parameter txt1 is not
recognized as a valid ASMLANGX argument (or
option).

ASMLANGX processing is terminated.

User response: Correct the invocation parameter.

ASMXMA054S File mode is too long, "txt1"

Explanation: The CMS file mode specification txt1,
which is longer than 2 characters, was encountered
during processing of the ASMLANGX invocation
parameters.

ASMLANGX processing is terminated.

User response: Correct the file mode specification.

ASMXMA055S A left parenthesis was found inside
options

Explanation: An extra left parenthesis, after the initial
left parenthesis which signals the start of the
ASMLANGX options, was encountered during
processing of the ASMLANGX invocation parameters.

ASMLANGX processing is terminated.

User response: Correct the options specification.

ASMXMA056S No file name was specified

Explanation: The file name (on CMS, PDS member
name on TSO) of the primary program information file
from which source and variable data is to be extracted
was not found during processing of the ASMLANGX
invocation parameters.

ASMLANGX processing is terminated.

User response: Specify the name of the primary
program information file.

ASMXMA057S Argument/Option already specified,
"txt1"

Explanation: The argument (or option) txt1 has been
encountered more than once during processing of the
ASMLANGX invocation parameters.

ASMLANGX processing is terminated.

User response: Remove the duplicate argument (or
option).

ASMXMA058S Argument/Option "txt1" conflicts
with previous Argument/Option

Explanation: A conflict between the argument (or
option) txt1 and another previously specified argument
(or option) has been detected during processing of the
ASMLANGX invocation parameters.

ASMLANGX processing is terminated.

User response: Remove the conflicting argument (or
option).

ASMXMA059I Application language not specified,
option "txt1" assumed

Explanation: In the absence of an ASMLANGX option
which explicitly specifies the application programming
language, the ASMLANGX option txt1 was assumed.

ASMLANGX processing continues.

User response: Specify the application language, using
the appropriate ASMLANGX option.

ASMXMA017I • ASMXMA059I

280 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMXMA100S txt1 contains NO recognized records

ASMXMA101W Warning - txt1 file newer than txt2
file

ASMXMA102T txt1 file has more txt2 than txt3 file

ASMXMA103S txt1 has unrecognized records
following last valid section

ASMXMA104W Expected: dec1, actual: dec2 at line
dec3

ASMXMA105W ...Symbols txt1.. dec2

ASMXMA111S txt1 not supported - fatal

ASMXMA114S txt1 required for source support -
fatal

ASMXMA115W txt1 required for symbol support

ASMXMA116W txt1 required for structure/union
support

ASMXMA120W txt1 detected. txt2 option assumed

Explanation: The format of the input file indicates that
the specified option is no longer in effect.

ASMLANGX processing continues, assuming an
appropriate option to match the format of the input
file.

User response: Use the correct compiler option, or
make the compiler directive which adjusted the
compiler option visible to ASMLANGX, as appropriate.

ASMXMA130S File not found "txt1"

Explanation: The ASMLANGX extract data file txt1
could not be found to allow ASMLANGX processing to
begin.

ASMLANGX processing is terminated.

User response: Correct the file specification, or make
the file available to ASMLANGX, as appropriate.

ASMXMA131S Files not found “txt1”, and “txt2”

Explanation: The ASMLANGX extract data file could
not be found using either the primary file identifier
txt1, or the alternative file identifier txt2 to allow
ASMLANGX processing to begin.

ASMLANGX processing is terminated.

User response: Correct the file specification, or make
the file available to ASMLANGX, as appropriate.

ASMXMA132S Input or Output file format invalid

Explanation: The attributes or contents of a file have
been found to be inappropriate, during ASMLANGX
processing.

One or more preceding messages will identify the file
which was being processed when the error occurred.

ASMLANGX processing is terminated.

User response: Correct the problem identified in the
preceding message.

ASMXMA133S File DD not allocated "txt1"

Explanation: The Data Definition (DD) for the txt1 file
was found to be unallocated.

ASMLANGX processing is terminated.

User response: Allocate the file, using a JCL DD
statement, or TSO ALLOCATE statement, as
appropriate.

ASMXMA134S File DDs not allocated “txt1”, and
“txt2”

Explanation: The Data Definitions (DDs) for the both
the primary txt1 file and the alternative txt2 file were
found to be unallocated.

ASMLANGX processing is terminated.

User response: Allocate the file, using a JCL DD
statement, or TSO ALLOCATE statement, as
appropriate.

ASMXMA135S txt1 file incorrectly defined

Explanation: The attributes of the txt1 file have been
examined, and found to be inappropriate.

ASMLANGX processing is terminated.

User response: Ensure that the correct data set has
been specified in the txt1 file allocation. If the correct
data set was specified, the data set has been allocated
with incorrect attributes, in which case it must be
reallocated.

ASMXMA136S Premature txt1 End-of-File
encountered

Explanation: ASMLANGX had begun scanning the
txt1 file data, but the file ended before all expected data
records had been scanned.

ASMLANGX processing is terminated.

User response: Ensure that the correct data set has
been specified in the txt1 file allocation. If the correct
data set was specified, the file may have been truncated

ASMXMA100S • ASMXMA136S

Appendix B. Diagnostic messages 281

and must be replaced with the complete data.

ASMXMA137S txt1 disk/directory is full

Explanation: There is insufficient space to write
further records to the txt1 file.
v On CMS, this may be caused by:

– minidisk free space being exhausted
v On z/OS, this may be caused by:

– PDS directory having no free entries
– data set having maximum number of extents
– insufficient free space on the DASD volume for

another extent
v On z/VSE, this may be caused by:

ASMLANGX processing is terminated.

User response: Determine the resource which has
been exhausted, and correct as appropriate.

ASMXMA138T Insufficient virtual memory available

Explanation: There is insufficient free storage for
ASMLANGX to continue processing.

ASMLANGX processing is terminated.

User response: Free up virtual storage which is
currently in use, or make more virtual storage
available, as appropriate.

ASMLANGX exploits storage above the 16 MB line, if it
is available.

ASMXMA139S File is TERSEd or PACKed "txt1"

Explanation: The specified file was found to have a
Fixed record format, and 1024-byte record length. It
was likely compressed using TERSE or COPYFILE.

ASMLANGX processing is terminated.

User response: Restore the file to its original format,
using the appropriate utility program.

ASMXMA150T Maximum number of symbols
exceeded

Explanation: The maximum number of symbols that a
single compile unit can contain is 65534. This limit is
exceeded by the current compile unit.

ASMLANGX processing is terminated.

User response: Reduce the number of symbols below
the limit.

ASMXMA151T Extract information not available for
symbol dec1

Explanation:

User response:

ASMXMA152W Incomplete information for symbol
"txt1" (ident: dec2)

Explanation: During the extraction process, complete
information was not available for the symbol shown.
The extract data for unrelated symbols and program
source is not affected.

ASMLANGX processing continues.

ASMXMA153W Declared at line dec1, stmt dec2

Explanation: This message is associated with
ASMX152W, and provides more information to allow
the symbol to be easily identified.

User response: None

ASMXMA154W Unknown txt1 txt2 token, "txt3" at
line dec4 of txt5

ASMXMA155W Member txt1 dot qualification
invalid at line dec2 of txt3

ASMXMA156W Incomplete txt1 information detected
at line dec2 of txt3

ASMXMA157W No ESD entry for external definition
"txt1"

ASMXMA159W Pseudo-Assembly synchronization
error at line dec1 of txt2

ASMXMA160W Unable to locate txt1 for label "txt2"

ASMXMA161W txt1 ignored at line dec2 of txt3

ASMXMA162W - check for txt1 suppression via txt2

ASMXMA163W Possible candidate
procedure/functions:

ASMXMA164W - name: txt1

ASMXMA165W defined at txt1 (txt2)

ASMXMA166W cross reference entry at line dec1 of
listing

ASMXMA167W Within dead code, txt1

ASMXMA137S • ASMXMA167W

282 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

ASMXMA168W txt1 attribute conflict for symbol
"txt2" (ident: dec3)

ASMXMA200W txt1. Contact IBM Support Center

ASMXMA201T txt1 is terminated. Contact IBM
Support Center

ASMXMA210S Extraction for txt1 is not supported
(by this version of txt2)

ASMXMA211W Extraction for your release of txt1 is
not supported (by this version of txt2)

ASMXMA212W The txt1 which produced txt2 could
not be identified

ASMXMA213W Verify that mandatory txt1
maintenance has been applied

ASMXMA214S txt1 error messages detected at record
dec2 of txt3

ASMXMA220W txt1 overflowed

ASMXMA221W txt1 overflowed at record dec2 of txt3

ASMXMA222W txt1 encountered at record dec2 of
txt3

ASMXMA223W txt1 encountered for stmt dec2 at
record dec3 of txt4

ASMXMA224W txt1dec2 encountered for stmt dec3 at
record dec4 of txt5

ASMXMA225W txt1 txt2 encountered at record dec3
of txt4

ASMXMA226W txt1 dec2 mismatch at record dec3 of
txt4

ASMXMA228W Alias missing, id=dec1

ASMXMA229W No txt1 were detected

ASMXMA231S Missing txt1 ESD information

ASMXMA232S Unable to determine location of
program code/data

ASMXMA233S Unable to determine identity of
unnamed PC Section

ASMXMA235W The DSA base reg txt1 is not
defined to txt2

ASMXMA240S txt1 extraction is only supported for
txt2

ASMXMA241S For txt1, enable the txt2 "txt3" option

ASMXMA242S and make the txt1 file available to
ASMLANGX

ASMXMA311T Maximum number of statements
exceeded

Explanation: The maximum number of statements that
a single compile unit can contain is 65535. This limit is
exceeded by the current compile unit. ASMLANGX
processing is terminated.

User response: Reduce the number of statements
below the limit.

ASMXMA168W • ASMXMA311T

Appendix B. Diagnostic messages 283

284 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Appendix C. Abbreviations

The following list shows the minimum abbreviation for all IDF keywords in UPPER case. Keywords
added or changed in this version are flagged with an asterisk:

$$
$WHERE
?
=
ABEND
ADStops
AFPR
ALArm
ALet
AMODE24
AMODE31
AMODE64
AREGS
ARGument
AR0
AR1
AR10
AR11
AR12
AR13
AR14
AR15
AR2
AR3
AR4
AR5
AR6
AR7
AR8
AR9
ASCii
AUTOLoad
AUTOSize
BACK
BASe
BCX
BREak
CDE
CKSubcm
CLOse

CMDLog
CMDMsg
CMPEXIT
COLors
COMmand
CREGs
CURsor
DFLTLsm
DISasm
DMS0
DROp
DUMP
DUMPMode
EPNAMES
EPOffset
EVEnt
EXItexec
EXTract
FASTPath
FINd
FOllow
FPC
FPR
FULLQual
GLObal
GPR
GPRG
GPRH
HEXDisp
HEXInput
HISTory
ICOunt
IMPMacro
INVPsw
ISA
KWDSYN
LANguage
LASTmsg
LEft
LIBE

LIKE
LINE
LOad
LOCATIon
LSM
LSMDebug
LSMProf
LUtype
MACro
MACROLog
MODE
MODMap
MODUles
MOVe
MRUn
MSG
MSG1
MSG2
MSTep
Next
NLS
NOAUTOLd
NOAUTOSz
NOBcx
NODSects
NOIMPMac
NOINVPsw
NOMODMap
NOPROfil
NOSTOPNp
NOSTOPSt
NOSVC97
NUCext
OFF
OFFSet
OLDBREAK
ON
OPCODE
OPEn
OPTion

OPTions
ORDer
OREGs
PASspgm
PATH
PATHFile
PAUSe
PER
PFK
PFKDisp
PLIST
Previous
PROfile
PROGchk
PROGck
PSW
PSWSTEAL
QUAlify
QUIt
QWDump
RCQuit
REFresh
REGs
REGS64
REGSTops
RETRieve
RIght
RISk
RLog
ROWstyle
RUN
RUNExit
R0
R1
R10
R11
R12
R13
R14
R15

R2
R3
R4
R5
R6
R7
R8
R9
SBORDer
SCDactiv
SELFNucx
SET
SIZe
SKIPstep
STATus
STAY
STEp
STMTstep
STOKey
STOPNOP
STOPSTmt
STRucture
SUBset
SVC
SVC97
SWAp
SYMbols
SYStem
TRACeall
TRANs
UNFtdump
UNTil
VALue
VARiable
VChange
VERsion
VS
WATch
WINDows
XEDexit
1ADStop

Note: The following keywords are used for maintenance commands and can therefore not be used as
macro names: $WHERE, $$.

© Copyright IBM Corp. 1992, 2015 285

286 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Appendix D. Performance considerations

When IDF displays an area of memory, in either disassemble or dump format, the screen display is
created dynamically, but a page-forward operation should occur at essentially the data transfer rate of the
terminal.

If statement source is being displayed, the actual source text is obtained dynamically from the IDF
Language extract data file. The extra overhead compared to pure disassembly is minimized by the design
of the IDF Language Support.

Some delays may be noticed on heavily loaded systems, but these are generally in the nature of
scheduling delays, where IDF is waiting its turn at the processor.

There is a general belief that using PER will cause a serious system-wide performance impact. When
using CP PER this belief is probably well justified, since there is significant processing for any instruction
that modifies storage, because CP performs a partial disassembly to determine where storage was
modified. Since this processing is happening on the CP level it can seriously affect performance on a
system-wide basis.

When IDF is used for a similar function, there should be no significant system-wide performance penalty
above that imposed by any processor-bound application. Instead of disassembling instructions, CP needs
only to report an interrupt to the virtual machine in which IDF is operating.

When the PATH option is OFF, the target program runs at what amounts to full speed between
breakpoints. When the PATH option is ON, IDF causes an interrupt following every target program
instruction.

Overhead per breakpoint varies in the approximate range of 300-500 IDF instructions per breakpoint. This
includes prioritized breakpoint insertion, target activation, interrupt occurrence, event recognition, and
saving the target program's state. The variation is as follows, with the first item shown being the least
costly and the last item shown being the most costly:
1. PER OFF, PATH OFF
2. PER ON, PATH OFF
3. PER OFF, PATH ON
4. PER ON, PATH ON

Even though the PATH option can be relatively costly in terms of processor usage, it is extremely useful
both for collecting code coverage information and for "back-tracking" by means of the HISTORY
command.

Exit routines should also be used with some caution, since a REXX exec is executed each time a
breakpoint event occurs.

When the list of subroutines to be skipped when single-stepping, statement stepping, or running with
PATH or FASTPATH active is not empty there is more overhead on every "subroutine call instruction"
(for example, BALR, BAL, BASSM) that is executed. There is a binary search of the list of subroutines to
be skipped to determine if the subroutine being called is supposed to be skipped.

© Copyright IBM Corp. 1992, 2015 287

288 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Appendix E. Migrating from TSO/E TEST to IDF

This section describes some considerations for those users of IDF who are migrating from a debug setup
which used the TSO/E TEST debugger.

General considerations
TSO/E TEST and IDF have different command syntaxes. This section does not provide a detailed
comparison of the two command sets. However, procedures are described to perform operations
equivalent to those under TSO/E TEST.

The expression syntaxes are somewhat different. Instead of TSO/E TEST's "modname.csect.address" IDF
uses "(modname.csect)address". The CSECT name may be omitted if the address is unique within the
module. The module name may be omitted, if the address is in the qualified module, which is set by the
QUALIFY command. For register specifications in expressions IDF uses "n(Rn)" instead of TSO/E TEST's
"nR%+n". IDF supports the same "%" and "?" indirection operators as TSO/E TEST. However, the first
indirection operator following a register specification is used to determine the size of the address in the
register. For more details on expressions in IDF see “Address expressions” on page 80.

Some significant advantages of IDF over TSO/E TEST are:
v IDF is a full screen debugger
v IDF can single-step
v IDF is easy to customize through its REXX macro capabilities.
v IDF has a sophisticated cursor addressing support which minimizes the amount of typing you have to

do. For more details see “Intelligent cursor sensing” on page 5.

TSO/E TEST does have some advantages over IDF:
v TSO/E TEST has automatic symbol support for all load modules loaded.

ASMIDF provides the following alternatives:
– For dynamically loaded modules, the IDF DBREAK command should be used. When the module is

fetched into storage, IDF will automatically load symbols.
– The process of manually identifying extra modules in storage to IDF and loading symbols requires

only two commands: MODULE CDE and LOAD SYMBOLS.

Invoking the target program
Properly invoking IDF can easily get you breakpoints in modules that get loaded by another. For
example, here is what you do if you want to debug the program XYZZY that runs as an ISPF dialog,
using TSO TEST:

Here is what you do using using ASMIDF:

TEST ’SYS1.ISP.LINKLIB(ISPF)’ CP
ISPSTART PGM(XYZZY)
AT XYZZY.XYZZY.+0 DEFER

Figure 28. Invoking an ISPF dialog using TSO TEST

© Copyright IBM Corp. 1992, 2015 289

This can only be done if you are using SVC 97 for breakpoints.

Specifying the target program parameters
As shown in the example above, another difference between IDF and TSO/E TEST is in the debugging of
TSO command processors. With TSO/E TEST adding the option CP to the TEST command tells TSO/E
TEST that the program being debugged is a TSO command processor. TSO/E TEST then prompts you for
the command to be passed to the target in the form of a Command Processor Parameter List (CPPL).
Under IDF, the COMMAND option instructs IDF that the parameter string is not a parameter for the
target but is a command that should be executed when the target is first started (with the RUN or MRUN
commands). If the command being executed is the target program, then you can debug a TSO command
which is passed a CPPL. A few examples may help illustrate this:
1. If you wanted to debug a REXX/TSO function package, for example, RXLOCFN:

v Here is what you do using TSO TEST:
TEST ’SYS1.LINKLIB(REXX)’ CP
EXEC REXTRY
AT RXLOCFN.RXLOCFN.+0 DEFER

v Here is what you do using IDF:
ASMIDF RXLOCFN (COMMAND/EXEC REXTRY

once in IDF,
BREAK (RXLOCFN).

v In this example IDF is not passing control to RXLOCFN but to EXEC and the parameter string that
is passed as a CPPL is for EXEC.

2. If you wanted to debug a command processor, INVOKE in this case:
v Here is what you do using TSO TEST:

TEST LOAD(INVOKE) CP
INVOKE IEBGENER

v Here is what you do using IDF:
ASMIDF INVOKE (COMMAND/INVOKE IEBGENER

v In this example IDF is passing control to INVOKE and the parameter string that is passed as a
CPPL is for INVOKE.

ASMIDF ISPF (COMMAND/ISPSTART PGM(XYZZY)

once in IDF,
DBREAK (XYZZY.)

Figure 29. Invoking an ISPF dialog using IDF

290 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1992, 2015 291

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

292 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

http://www.ibm.com/legal/copytrade.shtml

Bibliography

High Level Assembler Documents
HLASM General Information, GC26-4943
HLASM Installation and Customization Guide, SC26-3494
HLASM Language Reference, SC26-4940
HLASM Programmer's Guide, SC26-4941

Toolkit Feature document
HLASM Toolkit Feature User's Guide, GC26-8710
HLASM Toolkit Feature Debug Reference Summary, GC26-8712
HLASM Toolkit Feature Interactive Debug Facility User's Guide, GC26-8709
HLASM Toolkit Feature Installation and Customization Guide, GC26-8711

Related documents (Architecture)
z/Architecture Principles of Operation, SA22-7832

Related documents for z/OS
z/OS:
z/OS MVS JCL Reference, SA23-1385
z/OS MVS JCL User's Guide, SA23-1386
z/OS MVS Programming: Assembler Services Guide, SA23-1368
z/OS MVS Programming: Assembler Services Reference, Volume 1 (ABE-HSP), SA23-1369
z/OS MVS Programming: Assembler Services Reference, Volume 2 (IAR-XCT), SA23-1370
z/OS MVS Programming: Authorized Assembler Services Guide, SA23-1371
z/OS MVS Programming: Authorized Assembler Services Reference, Volumes 1 - 4, SA23-1372 - SA23-1375
z/OS MVS Program Management: User's Guide and Reference, SA23-1393
z/OS MVS System Codes, SA38-0665
z/OS MVS System Commands, SA38-0666
z/OS MVS System Messages, Volumes 1 - 10, SA38-0668 - SA38-0677
z/OS V2R1.0 Communications Server: SNA Programming, SC27-3674
UNIX System Services:
z/OS V2R1.0 UNIX System Services User's Guide, SA23-2279
DFSMS/MVS:
z/OS DFSMS Program Management, SC27-1130
z/OS DFSMSdfp Utilities, SC23-6864
TSO/E (z/OS):
z/OS TSO/E Command Reference, SA32-0975
SMP/E (z/OS):
SMP/E for z/OS Messages, Codes, and Diagnosis, GA32-0883
SMP/E for z/OS Reference, SA23-2276
SMP/E for z/OS User's Guide, SA23-2277

© Copyright IBM Corp. 1992, 2015 293

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr010.pdf
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC27-3674-00
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2m200/CCONTENTS

Related documents for z/VM
z/VM: VMSES/E Introduction and Reference, GC24-6243
z/VM: Service Guide, GC24-6247
z/VM: CMS Commands and Utilities Reference, SC24-6166
z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6167
z/VM: CP Planning and Administration, SC24-6178
z/VM: Saved Segments Planning and Administration, SC24-6229
z/VM: Other Components Messages and Codes, GC24-6207
z/VM: CMS and REXX/VM Messages and Codes, GC24-6161
z/VM: CP System Messages and Codes, GC24-6177
z/VM: CMS Application Development Guide, SC24-6162
z/VM: CMS Application Development Guide for Assembler, SC24-6163
z/VM: CMS User's Guide, SC24-6173
z/VM: XEDIT User's Guide, SC24-6245
z/VM: XEDIT Commands and Macros Reference, SC24-6244
z/VM: CP Commands and Utilities Reference, SC24-6175

Related documents for z/VSE
z/VSE: Guide to System Functions, SC33-8312
z/VSE: Administration, SC34-2627
z/VSE: Installation, SC34-2631
z/VSE: Planning, SC34-2635
z/VSE: System Control Statements, SC34-2637
z/VSE: Messages and Codes, Vol.1 , SC34-2632
z/VSE: Messages and Codes, Vol.2, SC34-2633
z/VSE: Messages and Codes, Vol.3, SC34-2634
REXX/VSE Reference, SC33-6642
REXX/VSE User's Guide, SC33-6641

294 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

http://publibz.boulder.ibm.com/epubs/pdf/hcsc6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsf1c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd8c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsi3c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg0c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb5c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd0c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd2c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd7c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd9c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse0c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4c20.pdf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iessye40/CCONTENTS
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesame71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESIST70/CCONTENTS?SHELF=IESVSE91&DN=SC34-2631-00
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesple72.pdf
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iessoe71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC171/CCONTENTS?SHELF=IESVSE91&DN=SC34-2632-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC271/CCONTENTS?SHELF=IESVSE91&DN=SC34-2633-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC371/CCONTENTS?SHELF=IESVSE91&DN=SC34-2634-01
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrre31/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrue02/CCONTENTS

Glossary

A

ABEND
An acronym for ABnormal END, the
termination of a task or job before its
completion because of an error condition
that cannot be resolved by error recovery
facilities while the task or job is running.

Access Register
Specialized high speed storage location,
32 bits in size. A z/Architecture processor
has 16 ARs, A0-A15. The AR contents are
used in ESA/370 (or ESA/390) mode to
specify the dataspace to be used by an
ESA-exploitative machine instruction.

active block
The currently executing block that
invokes the Interactive Debug Facility or
any of the blocks in the CALL chain that
leads up to this one.

Address Stop
See Storage Alteration Stop.

AdStop
See Storage Alteration Stop.

AdStops window
The IDF window which lists the currently
active Storage Alteration Stops (AdStops)
and Register Alteration Stops (RegStops).
This window is only available on CMS,
when IDF's of PER is enabled.

alias An alternative name for a field.

AR See Access Register.

argument
Data passed from one program or
procedure to another. Contrast with
parameter.

ASMIDF
See Interactive Debug Facility.

assemble
To translate a program written in
assembly language into a
machine-language program.

assembler
A program that translates instructions
written in assembly language into
machine language.

attention interrupt
An I/O interrupt caused by a terminal or
workstation user pressing an attention
key, or its equivalent.

attention key
A function key on terminals or
workstations that, when pressed, causes
an I/O interrupt in the processing unit.

attribute
A characteristic or trait you can specify.

|B

batch Pertaining to a predefined series of
actions performed with little or no
interaction between a user and the
system. Contrast with interactive.

batch job
A job submitted for batch processing. See
batch. Contrast with interactive.

block In programming languages, a compound
statement that coincides with the scope of
at least one of the declarations contained
within it.

Break window
The IDF window which lists the currently
active breakpoints. These include those
breakpoints set by the BREAK, DBREAK,
and WATCH commands.

breakpoint
A place in a program, normally specified
by a command or a condition, where
execution can be interrupted and control
given to the user or to the Interactive
Debug Facility.

C

Command window
The IDF window which contains the
command input area, the message display
areas, and (optionally) the display of the
PF key captions.

compile
To translate a program written in a high
level language into a machine-language
program.

compile unit
A sequence of statements that make a

© Copyright IBM Corp. 1992, 2015 295

portion of a program complete enough to
compile (or assemble, as appropriate)
correctly. Each language has different
rules for what comprises a compile unit.

compiler
A program that translates instructions
written in a high level programming
language into machine language.

condition
Any synchronous event that may need to
be brought to the attention of an
executing program or the language
routines supporting that program.
Conditions fall into two major categories:
conditions detected by the hardware or
operating system, which result in an
interrupt; and conditions defined by the
programming language and detected by
language-specific generated code or
language library code. See also exception.

constant
A name used to represent a data item
whose value cannot be changed while the
program is running. Contrast with
variable.

Control Register
Specialized control facility, 32 bits in size.
A z/Archtecture processor has 16 GPRs,
C0-C15. The CR contents are used to
control processor modes and facilities

CR See Control Register.

Current Registers window
The IDF window which displays the
current PSW and registers. By default, the
current General Purpose Registers (GPRs)
and Floating Point Registers (FPRs) are
shown, but the current Access Registers
(ARs) or Control Registers (CRs) may be
shown instead.

currently qualified
See qualification.

D

data type
A characteristic that determines the kind
of value that a field can assume.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

DBCS See double-byte character set.

DCSS DisContiguous Shared Segment (CMS).

debug To detect, diagnose, and eliminate errors
in programs.

default
A value assumed for an omitted operand
in a command. Contrast with initial
setting.

disassemble
To translate machine language into
assembly language instructions and data
statements.

disassembler
A program that translates machine
language into assembly language
instructions and data statements.

disassembly
The assembly language instructions and
data statements which result from using a
disassembler to disassemble machine
language.

The act of using a disassembler.

Disassembly window
The IDF windows which display the
results of an IDF DISASM command. This
storage display will normally take the
form of disassembled machine
instructions. If IDF Language extract data
for these storage locations has been
loaded with LANGUAGE LOAD, then
program source statements will be shown
interleaved with the machine instructions.
You can control the display of source and
disassembly with various IDF commands.

display
A visual presentation of information
about a workstation, normally in a
specific format. Sometimes called a screen
or panel.

display attribute
A characteristic that determines how an
item appears on the display. Display
attributes can include the color of an item.
See also type style.

display line
A viewable line of text in a window,
whose exact appearance is determined by
factors such as window size.

DLBL z/VSE only. Disk label information.

296 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Further information is available in z/VSE:
System Control Statements.

double-byte character set (DBCS)
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, which
contain more symbols than can be
represented by 256 code points, need
double-byte character sets. Because each
character needs two bytes, the typing,
displaying, and printing of DBCS
characters needs hardware and programs
that support these characters.

dump The formatted display of storage contents.
Typically formatted with a hexadecimal
representation of the data on the left, and
a character interpretation on the right.

A file or data set containing storage
contents, intended for use in offline
debug. See also postmortem debug.

Dump window
The IDF windows which display the
results of an IDF DUMP command. This
storage display will take the form of a
dump, with the left side of the display
containing the storage contents in
hexadecimal, and the right side
containing a character interpretation.

dynamic
In programming languages, pertaining to
properties that can only be established
during the execution of a program; for
example, the length of a variable-length
data object is dynamic. Contrast with
static.

E

entry point
The address or label of the first
instruction executed on entering a
computer program, routine, or subroutine.
A computer program may have a number
of different entry points, each perhaps
corresponding to a different function or
purpose.

exception
An abnormal situation in the execution of
a program which typically alters its
normal flow. See also condition.

execute
To cause a program, utility, or other

machine function to carry out the
instructions contained within. See also
run.

execution time
See run time.

execution-time environment
See run-time environment.

exit exec
The same as an exit routine.

exit routine
A customization feature which associates
an IDF macro or another program with a
particular event.

expression
A group of constants or variables
separated by operators that yields a single
value. An expression can be arithmetic,
relational, logical, or a character string.

F

file A named set of records stored or
processed as a unit.

A system object containing records: for
example, a VM file, or an z/OS member
or partitioned data set. See data set.

Floating Point Register
The CPU has 16 floating-point registers.
The floating point registers are identified
by the numbers 0-15 and are designated
by a four-bit R field in floating point
instructions. Each floating-point register is
64 bits long and can contain either a Short
(32-bit) or a Long (64-bit) floating-point
operand.

FPR See Floating Point Register.

font A set of characters or symbols of a given
size, shape, and style.

frequency count
In the Interactive Debug Facility, a count
of the number of times statements in the
currently qualified program unit have
been run.

Frequency
A choice located on the Compact Source
or Compact Listing window action bar
that allows you to monitor the frequency
with which program statements are
carried out.

full-screen mode
An interface mode for use with a

Glossary 297

non-programmable terminal which
displays a variety of information about
the program you are debugging.

G

General Purpose Register
Each register contains 64 bit positions.
The general registers are identified by the
numbers 0-15.

GPR See General Purpose Register.

group A set of records that are associated
together as a logical unit.

H

high level language (HLL)
A programming language such as C,
PL/I, or COBOL.

HLL See high level language.

HLASM
Acronym for High Level Assembler.

I

Interactive Debug Facility
The IBM product informally known as
IDF, an application development and
maintenance facility for debugging
assembly language programs.

Interactive Debug Facility macro
A REXX EXEC which contains Interactive
Debug Facility commands.

inactive block
A block that is not currently executing, or
is not in the CALL chain leading to the
active block. See also active block, block.

initial setting
A value in effect when the user's
Interactive Debug Facility session begins.
Contrast with default.

interactive
Pertaining to a program or system that
alternately accepts input and then
responds. An interactive system is
conversational; that is, a continuous
dialog exists between a user and the
system. Contrast with batch.

I/O Input/output.

L

Language Support Module
The IDF subsystem which provides
Language Support extensions to the basic

machine-level (object-level,
disassembly-level) debug capabilities of
IDF, originally packaged as a separate
module.

LE/370 See IBM Language Environment for z/OS
and z/VM.

library routine
A routine maintained in a program
library.

line mode
An interface mode for use with a
non-programmable terminal which uses a
single command line to accept Interactive
Debug Facility commands.

link-edit
To create a loadable computer program
using a linkage editor.

linkage editor
A program that resolves cross-references
between separately compiled object
modules and then assigns final addresses
to create a single relocatable load module.

listing A printout that lists the source language
statements of a program with all
preprocessor statements, includes, and
macros expanded.

load module
A program in a form suitable for loading
into main storage for execution.

LUname
Defines the VTAM logical unit name of
the terminal used by IDF in z/VSE.

LSM See Language Support Module.

LSM Information window
The IDF windows which contains
information generated by IDF Language
Support commands.

M

MainFrame Interface (MFI)
This refers to the use of a
nonprogrammable terminal such as an
IBM 3270.

Maximize
The action used to remove a window
entry from the Minimized Windows
Viewer, and restore it to its previous
position on the display.

MFI See MainFrame Interface.

298 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Minimize
The action used to remove an IDF
window from the display and replaces it
with an entry in the Minimized Windows
Viewer.

Minimized Windows Viewer
An IDF window which contains entries
which represent minimized IDF windows.

module
The "package" which contains the
executable code and data for a program.
This may be in the form of a file, or an
area of storage.

multitasking
A mode of operation that enables the
concurrent performance, or interleaved
execution, of two or more tasks.

N

name pattern
A set of criteria used to display a list of
variable names.

O

Old Registers window
The IDF window which displays the PSW
and registers contents from the previous
point when IDF had control. By default,
the previous General Purpose Registers
(GPRs) and Floating Point Registers
(FPRs) are shown, but the previous Access
Registers (ARs) or Control Registers (CRs)
may be shown instead.

Options window
The IDF window which contains current
values of the IDF options and settings.

P

panel In the MFI Interactive Debug Facility, an
area of the screen used to display a
specific type of information.

parameter
Data received by a program or procedure
from another. Contrast with argument.

partitioned data set (PDS)
A data set in direct-access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

path point
A point in the program where control is

about to be transferred to another location
or a point in the program where control
has just been given.

PDS See partitioned data set.

PER Program Event Recording

postmortem debug
To detect, diagnose, and eliminate errors
in programs after the program has
ABENDed. This is typically performed
offline, using a dump file or data set.

prefix area
The eight columns to the left of the
program source or listing containing line
numbers. In the Interactive Debug
Facility, statement breakpoints can be set
in the prefix area.

primary entry point
See entry point.

Processor Status Word
This register describes the current
processor execution state. Various fields
contain the current:
v addressing mode
v execution address
v condition-code setting
v storage access key
v problem or supervisor state indicator
v other state indicators

procedure
In a programming language, a block, with
or without formal parameters, whose
execution is invoked by means of a
procedure call.

A set of related control statements. For
example, a z/VM exec, or a z/OS CLIST.

profile
A group of customizable settings that
govern how the user's session appears
and operates.

Profile
A choice that allows you to change some
characteristics of the working
environment, such as the pace of
statement execution in the Interactive
Debug Facility.

program
A sequence of instructions suitable for
processing by a computer. Processing can
include the use of an assembler, a

Glossary 299

compiler, an interpreter, or a translator to
prepare the program for execution, as
well as to execute it.

program part
A compile unit associated with an
application program. All program parts
known to the Interactive Debug Facility
are displayed in the MAP window.

program unit
See compile unit.

programmable workstation (PWS)
A workstation that has some degree of
processing capability and that allows you
to change its functions (for example, a
small computer such as an IBM Personal
System/2* (PS/2*) as a terminal device
along with appropriate 3270 emulation
software).

PSW See Processor Status Word.

PWS See programmable workstation.

Q

qualification
A method used to specify to what
procedure or load module a particular
variable name, function name, label, or
statement id belongs. The SET QUALIFY
command changes the current implicit
qualification.

R

record A group of related data, words, or fields
treated as a unit, such as one name,
address, and telephone number.

record format
The definition of how data is structured
in the records contained in a file. The
definition includes record name, field
names, and field descriptions, such as
length and data type. The record formats
used in a file are contained in the file
description.

reference
In programming languages, a language
construct designating a declared language
object.

A subset of an expression that resolves to
an area of storage; that is, a possible
target of an assignment statement. It can
be any of the following: a variable, an
array or array element, or a structure or

structure element. Any of the above can
be pointer-qualified where applicable.

Register
Specialized high speed storage location or
control facility. See General Purpose
Register, Floating Point Register, Access
Register, and Control Register.

Register Alteration Stop
This is a special breakpoint available
when IDF on CMS has exploitation of the
virtual machine Program Event Recorder
(PER) mode enabled. IDF will receive
control when any of the specified registers
is altered.

Register Stop
See Register Alteration Stop.

RegStop
See Register Alteration Stop.

run To cause a program, utility, or other
machine function to execute.

An action that causes a program to begin
execution and continue until a run-time
exception occurs. If a run-time exception
occurs, you can use debug windows to
interact with the Interactive Debug
Facility.

run time
Any instant at which a program is being
executed.

run-time environment
A set of resources that are used to
support the execution of a program.

run unit
A group of one or more object programs
that are run together.

S

SBCS See single-byte character set.

semantic error
An error in the implementation of a
program's specifications. The semantics of
a program refer to the meaning of a
program. Unlike syntax errors, semantic
errors (since they are deviations from a
program's specifications) can be detected
only at run time.

sequence number
A number that identifies the records
within a z/VM file, or a z/OS member or
partitioned data set.

300 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

session
The events that take place between the
time you start an application and the time
you exit the application.

shortcut keys
A key or combination of keys that starts
an application-defined function. The IDF
user interface term for accelerator keys or
hot keys.

single-byte character set (SBCS)
A character set in which each character is
represented by a one-byte code.

Skipped Subroutines window
The IDF window which lists the currently
active "Skipped Subroutine" breakpoints.
These are set by the SKIPSTEP command.

source The statements in a file that make up a
program.

In Interactive Debug Facility, the
representation of a program's source
statements displayed in the Disassembly
window.

static In programming languages, pertaining to
properties that can be established before
execution of a program; for example, the
length of a fixed length variable is static.
Contrast with dynamic.

status area
An area appended to a window that
shows the keyboard shift state for DBCS
on a DBCS-enabled workstation.

step One statement in a computer routine.

To cause a computer to execute one or
more statements.

storage
A unit into which recorded text can be
entered, in which it can be retained, and
from which it can be retrieved.

The action of placing data into a storage
device.

A storage device.

Storage Alteration Stop
This is a special breakpoint available
when IDF on CMS has exploitation of the
virtual machine Program Event Recorder
(PER) mode enabled. IDF will receive
control when storage within the specified
address ranges is altered.

subroutine
A sequenced set of instructions or
statements that can be used in one or
more computer programs at one or more
points in a computer program.

suffix area
A variable-sized column to the right of
the program source or listing statements,
containing frequency counts for the first
statement or verb on each line. In the
Interactive Debug Facility, the MFI
optionally displays the suffix area in the
Disassembly window. See also prefix area.

synchronous
Pertaining to two or more processes that
depend on the occurrence of specific
events. Contrast with batch, interactive.

syntactic analysis
An analysis of a program done by a
compiler to determine the structure of the
program and the construction of its
source statements to determine whether it
is valid for a given programming
language. See also syntax error.

syntax The rules governing the structure of a
programming language and the
construction of a statement in a
programming language.

syntax error
Any deviation from the grammar (rules)
of a given programming language
appearing when a compiler performs a
syntactic analysis of a source program.
See also syntactic analysis.

T

Target Status window
The IDF window which lists information
about the program modules which are
currently defined to IDF.

token A character string in a specific format that
has some defined significance in a
programming language.

triglyph
A group of three characters which, taken
together, are equivalent to a single special
character.

type style
A form of highlighting of characters and
symbols within a font set. For example,
bold, italic, strikeout, or underscore. See
also display attribute.

Glossary 301

U

utility A computer program in general support
of computer processes; for example, a
diagnostic program, a trace program, or a
sort program.

V

variable
A name used to represent a data item
whose value can be changed while the
program is running. Contrast with
constant.

W

window
A division of the display screen in which
one of several IDF commands can
concurrently display information.

windowing
Dividing a display screen into distinct
areas in which different display images
can be viewed at the same time.

workstation
One or more programmable or
nonprogrammable devices, normally
connected to a host or a network, at
which you can run applications. See also
programmable workstation.

302 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

Index

Special characters
? command 169
/ command 140

Numerics
1ADSTOP option

at invocation 25

A
abbreviations

list of 285
ABEND

causing 94
ABEND command 94
ABNEXIT 55
Access registers

initial contents 38
addresses

displayed by IDF 82
ADSTOP command 94
Adstops

clearing 66
AdStops

availability of 57
ADSTOPS command 95
AFPR command 95
alarm

sound from macro 95
ALARM command 95
ALET command 96
ALET for a Dump window

setting 96
allocation map

storage
display 187
extraction 247
obtaining 247

alteration
variable

optimized 105
AMODE24 option

at invocation 25
AMODE31 option

at invocation 25
AMODE64 option

at invocation 25
validity 25

APROGMSG command 96
APROGMSG option

setting 96
AREGS command 96
arguments 80, 83

passing to CMS program 51
passing to TSO program 42
passing to z/OS batch program 44
passing to z/VSE program 59

array
display scrolling 126

ARRAY 97
ARRAY command 97
array element

based 87, 97
data attributes

obtaining 225
data display

obtaining 225
extraction 225
information

obtaining 225
array elements

data display 97
array indexing 88
arrow, as base indicator 81
ASCII

storage
displayed in 69, 71
modified in 69, 73

ASCII option
at invocation 26

ASM ASMLANGX option 257
ASMIDFB

z/OS batch job 44
ASMLANGX

extraction file
allocation on TSO 16
optimum BLKSIZE 16

return codes 18
ASMLANGX options

ASM 257
CONDASM 257
DCL 257
DEBUG 257
ERROR 258
IFM 258
INCL 258
LOUD 258
MACDEF 259
NOCONDASM 257
NODCL 257
NOINCL 258
NOMACDEF 259
NOPACK 260
NOSEQ 261
OFM 259
OFN 260
OFT 260
PACK 260
PFM 260
PFT 261
QUIET 258
SEQ 261

ASMLKEDT
JCL Requirements for s/VSE 15

assembly
needed option 15
preparation 15
requirements 15

asynchronous events 57

© Copyright IBM Corp. 1992, 2015 303

asynchronous program-checks
trapping 96

attention key 48
Attention key 62
AUDIT command 98
AUDIT option

setting 98
AUTOLOAD option 186

at invocation 26
AUTOSIZE option 66

at invocation 26

B
BACK command 98
base address of program

setting 99
BASE command 99
base for data input 81
based

array element 87, 97
structure 87, 188
union 87, 188
variable 87, 88

basing expression
display 98

BCX option
at invocation 27

BINARY command 118
BIT command 99
block comment

display 128
BOTTOM command 100
BREAK command 100
break-in event

CMS 55
TSO 48
z/VSE 62

breakpoints
clearing 67
examining from a macro 226
execute until next reached 171
exit routine 213
missed 57
name 213
RC from exit routine to accept or ignore 214
set from macro 175
setting 100
types of 57
types of (z/OS) 101
types of (z/VM) 101
types of (z/VSE) 101
when taken 101

BRIEF command 102, 107
BRIEF option

setting 102

C
call chain

display 103, 172
extraction 226
save areas 103, 172

call hierarchy
display 103, 172
extraction 226

call hierarchy (continued)
save areas 103, 172

CALLERS command 103
capabilities 3
chains

following storage 114
changing high-order bits 123
CHARACTER command 104
CHECK command 105
CICS

on z/VSE 61
run as batch application 61

CKSUBCM option
at invocation 27

CLOSE command 106
CMDLOG option 80, 144

at invocation 27, 34
CMPEXIT option

at invocation 27
loading exit routing 215

CMS programs
debugging 51
preparation 51

CMS SUBSET
obtaining 189

CMS User Area
programs, debugging 52

COLOR command 127
colors

examining current setting 227
redefining

at invocation 28
in macro 106

COLORS command 106
COLORS option

at invocation 28
COLOUR command 127
COLOURS option

at invocation 28
command

as PF key function 91
cross-reference 91
entering on command line 107
retrieve previous 169

COMMAND command 107
command line

entering addresses on 80
obtaining contents from within a macro 227
placing text on from a macro 175

Command line
processing 107

COMMAND option 43, 45, 53
at invocation 28

commands 91
? 169
/ 140
ABEND 94
ADSTOP 94
ADSTOPS 95
AFPR 95
ALARM 95
ALET 96
APROGMSG 96
AREGS 96
ARRAY 97
AUDIT 98
BACK 98

304 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

commands (continued)
BASE 99
BINARY 118
BIT 99
BOTTOM 100
BREAK 100
BRIEF 102, 107
CALLERS 103
CHARACTER 104
CHECK 105
CLOSE 106
COLORS 106
COMMAND 107
COMPACT 107
CREGS 108
CURSOR 108
DBREAK 109
DETAIL 111
DISASM 111
DOWN 155
DROP GLOBAL 112
DROP MODULE 112
DROP SYMBOLS 113
DUMP 113
DUMPMODE 70, 114
EPNAMES 114
EPOFFSET 115
EXITEXEC 115
EXLIMIT 116
EXTRACT

ADSTOPS 223
ALET 224
AREGS 224
ARGS 224
ARGUMENT 224
ARRAY 225
BREAK 226
CALLERS 226
CMDMSG 227
COLORS 227
CURSOR 228
DISASM 230
EVENT 231
EXITEXEC 231
GLOBAL 231
GLOBAL STEM 232
GLOBAL STEMS 232
GSTATUS 232
ICOUNT 233
LANGUAGE ARGS 233
LANGUAGE ARGUMENTS 233
LANGUAGE CMDS 234
LANGUAGE COMMANDS 234
LANGUAGE OPTIONS 234
LANGUAGE STATUS 235
LANGUAGE STEM 235
LANGUAGE VERSION 235
LASTMSG 236
LOAD 237
LOCATION 237
LOCATION ALET 238
MAP 238
MODE 239
MODULES 239
MSTATUS 240
NAMES 240
OPTIONS 241

commands (continued)
EXTRACT (continued)

PER 241
PFK 241
PLIST 242
PLOCATES 242
QUALIFY 243
QUERY 243
REGS 244
REGSTOPS 244
SCOPE 244
SCRVAR 245
SELFNUCX 245
SKIPSTEP 246
SOURCE 246
STOREMAP 247
STRUCTURE 247
SVC 248
SYMBOLS 248
TASKS 249
TYPE 250
UNION 250
VALUE 250
VARIABLE 251
VDCL 251
VDECLARE 251
VERSION 252
VLOC 252
VVALUE 253
WINDOWS 253

FIND 116
FIRST 117
FIXED 118
FLOAT 118
FMT 120
FOLLOW 119
FORMAT 120
FPC 121
FPR 121
GLOBALS 121
GOTO 122
GPACK 122
GPR 122
GPRG 123
GPRH 123
GSTATUS 123
HIDE 124
HISTORY 125
ICOUNT 125
KWDSYN 126
LANGUAGE

+ 126
COLOR 127
COMMENTS 128
DCLS 128
DEBUG 128
DECLARES 128
DROP 129
LOAD 129
MACROS 132
OPTIONS 132
SCROLL 133
STATUS 133
STEM 134
VERSION 134
XPATH 135

LAST 135

Index 305

commands (continued)
LASTMSG 136
LEFT 136
LIBE 137
LOAD 138
LOCATE 140
LOCATION 140
LOCATION ALET 141
MACRO 141
MAJOR 142
MAP 142
MAXIMIZE 74, 143
MINIMIZE 74, 143
MODE 144
MODULE BASE 145
MODULE CDE 144
MODULE NUCEXT 144
MODULE SIZE 146
MODULE TRANS 144
MOVE 66, 147
MPACK 149
MRUN 6, 149
MSG 150
MSGID 151
MSGMODE 151
MSTATUS 152
MSTEP 6, 153
NAMES 154
NEXT 155
OFFSET 155
OPEN 156
OPTIONS 157
ORDER 65, 158
OREGS 158
PACKED 158
PARMS 159
PAUSE 159
PER 160
PFK 9, 160
PFKDISP 160
PLOCATES 161
PRESERVE 162
PREVIOUS 162
PROGCHK 163
PROGCK 163
PSW 122
PSWSTEAL 164
QQUIT 167
QUALIFY 165
QUIET 166
QUIETLY 166
QUIT 167
R0-R15 171
RCQUIT 167
REFRESH 168
REGS 168
REGS64 168
REGSTOPS 95
RESTORE 169
RETRIEVE 169
RIGHT 169
RLOG 80, 170, 196
RUN 171
RUNEXIT 171
SALIMIT 172
SAREGS 172
SAVE 162

commands (continued)
SEARCH 173
SELFNUCX 173
SET

ADSTOP 174
AREG 174
BREAK 175
COMMAND 175
EXITEXEC 176, 213, 215
GLOBAL 177
GLOBAL STEM 176
ICOUNT 177
OFFSET 177
OPTION 6, 178
OPTION AUTOSIZE 66
PSW 179
REGSTOP 180
SET MODULE 144
SET PSW 30
SIZE 180

SET OPTION 6
SHOW 181
SIZE command 182
SKIPSTEP 39, 86, 153, 184
SPACE 184
STATUS 185
STEP 185
STMTSTEP 186
STOKEY 187
STOREMAP 187
STRUCTURE 188
SUBSET 189
SVC 189
SWAP 190
SYMBOL 190
TASKS 191
TITLE 191
TOP 192
TRIGGER LOAD 192
TYPE 193
UNION 188, 193
UNTIL 194
UP 162
VALUE 194
VARIABLE 86, 195
VCHANGE 196
VERSION 196
VS 196
VSEP 197
WATCH 197
WHERE 199
XEDEXIT 199
ZONED 200

comments
display

enabling 181
excluding 124

COMMENTS command 128
COMPACT command 107
COMPACT option

setting 107
compaction

extract file storage 149
Global Storage data storage 122

CONDASM ASMLANGX option 257
Controlling 86
CREGS command 108

306 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

CSECT
specifying 81

current screen contents
extraction 245
obtaining 245

cursor
determining position of from macro 228
setting position from macro 108

CURSOR command 108
cursor position

rules used by IDF 83
customization

screen 127

D
data address

extraction 252
variable

obtaining 252
data attributes

array element
obtaining 225

display 193
extraction 225, 247, 250, 251
structure

obtaining 247
variable

display 193
obtaining 250, 251

data display
array element

obtaining 225
extraction 251, 252
structure 188

obtaining 247
union 188
variable 86, 195

obtaining 251, 252, 253
data format

bit variables
* 99
BIT 99
default 99
HEX 99

character variables
* 104
ASCII 104
CHARACTER 104
default 104
EBCDIC 104
HEX 104
PACKED 104
ZONED 104

fixed variables
* 118
DECIMAL 118
default 118
HEX 118

float variables
* 118
default 118
FIXED 118
HEX 118
SCIENCE 118
STANDARD 118
STD 118

data format (continued)
packed decimal variables

* 158
DECIMAL 158
default 158
HEX 158

Zoned decimal variables
* 200
DECIMAL 200
default 200
HEX 200

data location
extraction 252
variable

obtaining 252
data set conventions

z/OS 41
z/VSE 59

data value
extraction 253
variable

obtaining 253
DB2

debugging programs in 48
DBREAK command 109
DCL ASMLANGX option 257
DD conventions

z/OS 41
dead code 38
DEBUG ASMLANGX option 257
DEBUG command 128
debugging

CMS programs 51
z/OS programs 41
z/VSE programs 59

debugging support
LSM 128

declarations
display

enabling 181
excluding 124

declare display 128
DECLARES command 128
default

dump format
changing at invocation 37

ENTER key function 80
PF key definitions 80

delaying execution 159
DETAIL command 111
DISASM command 111
disassembly

display
enabling 181
excluding 124

obtaining from macro 230
display

Access registers 96
allocation map

storage 187
array elements 97
IDF Language Support

options 132
settings 132

location
symbolic name 199

Index 307

display (continued)
registers

Access 96
storage

allocation map 187
task information 191
value of expression 194
variable

data attributes 193
information 193
type attributes 193

display scrolling
array display 126
LSM Information window 126
status display 126
structure display 126
union display 126
variable display 126

DMSO option
at invocation 28

documents
High Level Assembler 293
HLASM Toolkit 293
machine instructions 293
z/OS 293
z/VM 293, 294
z/VSE 294

DOWN command 155
DROP command 129
DROP GLOBAL command 112
DROP MODULE command 112
DROP SYMBOLS command 113
dump

format
changing 114

symbolic and unformatted
differences 71

DUMP
automatic adjustment of 119

DUMP command 113
DUMPMODE command 70, 114
dynamically loaded programs

CMS 54
TSO 46
z/VSE 60

E
ENTER

default setting 80
Entry Point Names window

displaying 114
entrypoint offset of program

setting 115
environments supported 5
EPNAMES command 114
EPOFFSET command 115
ERROR ASMLANGX option 258
ESTAE exit 48
EVALBLOK 47, 55
execute to next breakpoint 171
execution

instruction counts 38, 39
reviewing previous 125

exit from IDF 167
exit from IDF with RC 167

exit routine
arguments passed at invocation 213
communication between 176, 177, 231, 232
compiled language 27, 215
conditions for execution 213
current

naming 176
determining current 231
enabling and disabling 115
information available to 214, 223
invoking by PF key 171
last event causing 231
naming at IDF invocation 28
writing 213
XEDIT the current 199

EXITEXEC command 115
EXITEXEC option 213

at invocation 28
EXLIMIT command 116
expression 80

displaying value of 194
indirection operators 82
locating 87, 88, 97
obtaining value of from a macro 250
placing on command line from a macro 175

expressions
based 188
locating 188

extended branch mnemonics 70
external calls

hierarchy
display 103, 172
extraction 226
save areas 103, 172

EXTRACT
return codes from 223

EXTRACT ADSTOPS command 223
EXTRACT ALET command 224
EXTRACT AREGS command 224
EXTRACT ARGUMENT command 224
EXTRACT ARRAY command 225
EXTRACT BREAK command 226
EXTRACT CALLERS command 226
EXTRACT CMDMSG command 227
EXTRACT COLORS command 227
EXTRACT CURSOR command 228
EXTRACT DISASM command 230
EXTRACT EVENT command 231
EXTRACT EXITEXEC command 231
extract file

association
querying 142

dropping
all 129
individual 129

loading 129
memory compaction 149
memory status information 152

obtaining 152
querying loaded files 133, 152
search path 135

EXTRACT GLOBAL command 231
EXTRACT GLOBAL STEM command 232
EXTRACT GLOBAL STEMS command 232
EXTRACT GSTATUS command 232
EXTRACT ICOUNT command 233
EXTRACT LANGUAGE ARGUMENTS command 233

308 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

EXTRACT LANGUAGE COMMANDS command 234
EXTRACT LANGUAGE OPTIONS command 234
EXTRACT LANGUAGE STATUS command 235
EXTRACT LANGUAGE STEM command 235
EXTRACT LANGUAGE VERSION command 235
EXTRACT LASTMSG command 236
EXTRACT LOAD command 237
EXTRACT LOCATION ALET command 238
EXTRACT LOCATION command 237
EXTRACT MAP command 238
EXTRACT MODE command 239
EXTRACT MODULES command 239
EXTRACT MSTATUS command 240
EXTRACT NAMES command 240
EXTRACT OPTIONS command 241
EXTRACT PER command 241
EXTRACT PFK command 241
EXTRACT PLIST command 242
EXTRACT PLOCATES command 242
EXTRACT QUALIFY command 243
EXTRACT QUERY command 243
EXTRACT REGS command 244
EXTRACT REGSTOPS command 244
EXTRACT SCOPE command 244
EXTRACT SCRVAR command 245
EXTRACT SELFNUCX command 245
EXTRACT SKIPSTEP command 246
EXTRACT SOURCE command 246
EXTRACT STOREMAP command 247
EXTRACT STRUCTURE command 247
EXTRACT SVC command 248
EXTRACT SYMBOLS command 248
EXTRACT TASKS command 249
EXTRACT TYPE command 250
EXTRACT UNION command 250
EXTRACT VALUE command 250
EXTRACT VARIABLE command 251
EXTRACT VDECLARE command 251
EXTRACT VERSION command 252
EXTRACT VLOC command 252
EXTRACT VVALUE command 253
EXTRACT WINDOWS command 253
extracting currently qualified module 243
extraction

allocation map
storage 247

current screen contents 245
Global Storage

status information 232
Global Storage status information

obtaining 232
ICOUNT 233
IDF Language Stem Name 235
IDF Language Support settings 234, 243
IDF Language Support version 235
IDF settings 243
LANGUAGE arguments 233
LANGUAGE commands 234
memory status information 240

obtaining 240
module

location 238
pointer Located variables 242
source records 246
statement scope 244
status information 235

extraction (continued)
storage

allocation map 247
task information 249
variable names 240

extraction file
ASMLANGX

allocation on TSO 16
optimum BLKSIZE 16

F
FASTPATH option 38

at invocation 29
file mode

obtaining current from macro 239
setting 144

FIND command 116
FIRST command 117
FIXED command 118
flag byte (R1) 51
FLOAT command 118
float variable 118
Floating Point registers

initial contents 38
FMT command 120
FOLLOW command 119
Following linked list 114
FORMAT command 120
format notation, description xi
FPC command 121
FPR

initial contents 38
FPR command 121
full-screen applications

debugging 49, 57, 63
FULLQUAL option 82, 229, 230

at invocation 29

G
getting started 9

program debug 9
program preparation 9

Global Storage
deleting stem 112
dynamically loaded

deleting stem 112
memory compaction 122
querying defined stems 121, 232
querying stem definitions 123
status information 123

extraction 232
obtaining 123

GLOBALS command 121
GOTO command 122
GPACK command 122
GPR command 122
GPR registers

initial contents 38
GPRG command 123
GPRH command 123
GSTATUS command 123

Index 309

H
HEXDISP option

at invocation 29
showing displacements 230

HEXINPUT option 250
at invocation 29

HIDE command 124
high-order bits

changing 123
HISTORY command 125
HLASM

assembly
preparation 15

program build
requirements 15

HNDEXT 55, 58
hostspot 38

I
ICOUNT command 125
IDF

invoking 21
IDF Language Stem Name

obtaining 235
IDF Language StemName

extraction 235
IDF Language Support

debugging information 31
Logical Unit name 31

IDF Language Support settings
extraction 234, 243
obtaining 234

IDF Language Support version
extraction 235
obtaining 235

IDF settings
extraction 243
preserving 162
restoring 169
saving 162
stack 162, 169

IFM ASMLANGX option 258
IMPMACRO option

at invocation 30
INCL ASMLANGX option 258
indirection operators 82
information

array element
obtaining 225

structure
obtaining 247

variable
display 193
obtaining 250, 251, 252, 253

informational message display
controlling 166

input checks
bounds 105
disabling 105
enabling 105
negative values 105
substring 105
unsigned variables 105

instructions
counting execution of 125

instructions (continued)
reviewing previous 125

interrupt routines 33
interrupts 57

handled by CMS 55
invocation

user area programs 21
validity checking at 21

invocation options 25
invoking IDF 21
invoking IDF on TSO

from a CLIST 42, 45
from a REXX EXEC 42, 45
from the TSO/E READY prompt 42, 45
IDF files

ALLOC of DDs 45
FREE of DDs 45

under ISPF 42, 45
user files

ALLOC of DDs 45
FREE of DDs 45

invoking IDF on z/VSE
IDF files 59

INVPSW option 179
at invocation 30

ISA location 55
ISA option

at invocation 30
ISPF

debugging programs in 47

J
JCL Requirements for s/VSE

ASMLKEDT 15

K
key

storage 187
keywords

abbreviations for 285
synonyms of 126

KWDSYN command 126

L
LANGUAGE

+ 126
COLOR 127
COMMENTS 128
DEBUG 128
DECLARES 128
DROP 129
LOAD 129
OPTIONS 132
SCROLL 133
STATUS 133
STEM 134
VERSION 134
XPATH 135

LANGUAGE + command 126
LANGUAGE COLOR command 127
LANGUAGE commands

extraction 234
obtaining 234

310 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

LANGUAGE COMMENTS command 128
LANGUAGE DCLS command 128
LANGUAGE DEBUG command 128
LANGUAGE DECLARES command 128
LANGUAGE DROP command 129
LANGUAGE LOAD command 129
LANGUAGE MACROS command 132
LANGUAGE OPTIONS command 132
LANGUAGE SCROLL command 133
LANGUAGE STATUS command 133
LANGUAGE STEM command 134
language support

additional capabilities 85
LANGUAGE VERSION command 134
LANGUAGE XPATH command 135
LAST command 135
LASTMSG command 136
LEFT command 136
LIBE option

at invocation 30
license inquiry 291
limitations

on CMS 6
on TSO 6
on z/VSE 7

limits
program's

CMS 56
z/OS 49
z/VSE 62

line address
terminal 31

line numbers
source code

display 181
LINE option 57

at invocation 31
linked list

following 114
LOAD command 129, 138
loading programs 144, 145, 146
LOADLIB

specifying in PROFILE macro 137
LOCATE command 140
locating expressions 188
location

displaying
symbolic name 199

LOCATION ALET command 141
LOCATION command 140
locator variable

displaying Located variables 161
extracting Located variables 242
obtaining Located variables 242

logging 170
long name

how truncated to produce short name 115
LOUD ASMLANGX option 258
LPSW Fastpath 149
LSM

debugging support 128
index limit 116
named 134

LSM Information window
scrolling 126

LSM Information window scrolling 133

LSMDEBUG option
at invocation 31

LUNAME option
at invocation 22, 23, 24, 31, 59

M
MACDEF ASMLANGX option 259
machine instructions

documents 293
macro

options
examining 241
setting within 178

MACRO command 141
macro expansions

display
enabling 181
excluding 124

MACROLOG option 144, 208
at invocation 31

macros
IDF 116, 134

communication between 231, 232
invocation by operator 141
return codes from 141

invocation of 207
writing 207

macros, IDF
communication between 176, 177
restrictions

MRUN 6
MSTEP 6

MAJOR command 142
MAJOR option

setting 142
MAP command 142
MAXIMIZE command 74, 143
memory constrained environments

optimum BLKSIZE 16
XA Exploitation 16

memory status information
extract file 152
extraction 240

message
format 263
numbers 263
severity levels 263
trapping programs 57

Message
obtaining contents from within a macro 227
obtaining current value of 227

message display
controlling 151, 166

messages 263
ASMKLKE 264
ASMKLKI 264
ASMKLKS 264
ASMKLKT 264
ASMKLKW 264
ASMLANGX 279
ASMLKEDT 264
ASMLVRE 264
ASMLVRI 264
ASMLVRS 264
ASMLVRT 264
ASMLVRW 264

Index 311

messages (continued)
ASMMAIE 270
ASMMAII 270
ASMMAIS 270
ASMMAIT 270
ASMMAIW 270
ASMXMAE 279
ASMXMAI 279
ASMXMAS 279
ASMXMAT 279
ASMXMAW 279
IDF 270
IDF Language Support 264
issuing from a macro 150
obtaining contents from within a macro 236
retrieving previous 136

MINIMIZE command 74, 143
Minimized Windows Viewer 143
missed breakpoints 57
mnemonics

extended branch 70
MODE command 144
MODE option 80

at invocation 32
changing value 239
checking value 239

MODMAP option
at invocation 32

module
deleting definition 112
displaying definition 77
dynamically loaded

defining to IDF 144, 145, 146
deleting definition 112

extracting currently qualified 243
extracting information about 239
location

extraction 238
obtaining 238
querying 142

preventing IDF from loading 144
setting qualified 165
specifying 81

MODULE BASE command 145
MODULE CDE command 144
MODULE NUCEXT command 144
MODULE SIZE command 146
MODULE TRANS command 144
MOVE command 66, 147
MPACK command 149
MRUN command 149
MSG command 150
MSGID command 151
MSGID option

interaction with CMDMSG 227
interaction with LASTMSG 236
setting 151

MSGMODE command 151
MSGMODE option

setting 151
MSTATUS command 152
MSTEP command 153

N
names

variable
displaying list 154
extracting list 240

NAMES command 154
NEXT command 155
NOAUTOLD option 186

at invocation 26
NOAUTOSZ option 66

at invocation 26
NOBCX option 70

at invocation 27
NOCONDASM ASMLANGX option 257
NODCL ASMLANGX option 257
NODSECTS option

at invocation 32
NOIMPMAC option

at invocation 30
NOINCL ASMLANGX option 258
NOINVPSW option 179

at invocation 30
NOMACDEF ASMLANGX option 259
NOMODMAP option

at invocation 32
NOPACK ASMLANGX option 260
NOPROFIL option

at invocation 33
NOSEQ ASMLANGX option 261
NOSTOPNP option 153, 185, 186

at invocation 35
NOSTOPST option 186

at invocation 36
NOSVC97 option 6, 42

at invocation 23, 36
debugging, TSO 44

notation, description xi
NUCEXT option 52

at invocation 32
Nucleus Extensions

self loading, debugging 52
Nucleus Extensions (CMS only)

explicitly loaded, debugging 52

O
obtaining

allocation map
storage 247

array element
data attributes 225
data display 225
information 225

current screen contents 245
Global Storage status information

extraction 232
IDF Language Stem Name 235
IDF Language Support settings 234
IDF Language Support version 235
IDF settings 234
LANGUAGE arguments 233
LANGUAGE commands 234
memory status information

extract file 152
extraction 240

312 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

obtaining (continued)
module

location 238
pointer Located variables 242
source records 246
statement scope 244
status information 235, 243

Global Storage 123
storage

allocation map 247
structure

data attributes 247
data display 247
information 247

task information 249
variable

data address 252
data attributes 250, 251
data display 251, 252, 253
data value 253
information 250, 251, 252, 253
type attributes 250

obtaining IDF Language Support version 134
OFFSET

extracting current 237
referring to in expressions 82
setting or querying 155

OFFSET command 155
OFFSET option 156

at invocation 33
OFM ASMLANGX option 259
OFN ASMLANGX option 260
OFT ASMLANGX option 260
OLDBREAK option

at invocation 33
OPEN command 156
operating IDF 65
operators

indirection 82
normal operator 81

optimum BLKSIZE
memory constrained environments 16

options
1ADSTOP

at invocation 25
AMODE24

at invocation 25
AMODE31

at invocation 25
AMODE64

at invocation 25
validity 25

APROGMSG
setting 96

ASCII
at invocation 26

at invocation 34
AUDIT

setting 98
AUTOLOAD 186

at invocation 26
AUTOSIZE 66

at invocation 26
BCX

at invocation 27
BRIEF

setting 102

options (continued)
CKSUBCM

at invocation 27
CMDLOG 80, 144

at invocation 27, 34
CMPEXIT

at invocation 27
loading exit routing 215

COLORS
at invocation 28

COLOURS
at invocation 28

COMMAND 43, 45, 53
at invocation 28

COMPACT
setting 107

described 178
displaying 75
DMSO

at invocation 28
EXITEXEC 213

at invocation 28
FASTPATH 38, 39

at invocation 29
FULLQUAL 82, 229, 230

at invocation 29
HEXDISP

at invocation 29
showing displacements 230

HEXINPUT
at invocation 29

IDF Language Support
display 132

IMPMACRO
at invocation 30

INVPSW 179
at invocation 30

ISA
at invocation 30

LIBE
at invocation 30

LINE 57
at invocation 31

LSMDEBUG
at invocation 31

LUNAME
at invocation 31, 59

macro
examining from within 241
setting from 178

MACROLOG 144, 208
at invocation 31

MAJOR
setting 142

MODE 80
at invocation 32
changing value 239
checking value 239

MODMAP
at invocation 32

MSGID
interaction with CMDMSG 227
interaction with LASTMSG 236
setting 151

MSGMODE
setting 151

NOAUTOLD 186

Index 313

options (continued)
at invocation 26

NOAUTOSZ 66
at invocation 26

NOBCX 70
at invocation 27

NODSECTS
at invocation 32

NOIMPMAC
at invocation 30

NOINVPSW 179
at invocation 30

NOMODMAP
at invocation 32

NOPROFIL
at invocation 33

NOSTOPNP 153, 185, 186
at invocation 35

NOSTOPST 186
at invocation 36

NOSVC97 6, 42
at invocation 36

NUCEXT 52
at invocation 32

OFFSET 156
at invocation 33

OLDBREAK
at invocation 33

PASSPGM
at invocation 33

PATH 38, 39, 69
at invocation 29

PATHFILE 38, 39, 69
at invocation 29

PROFILE 203
at invocation 33

QWDUMP
at invocation 34

RISK 141, 179, 238
at invocation 34

RLOG 80, 170
at invocation 34

ROWSTYLE
at invocation 34

SAREGS
setting 172

SBORDER
at invocation 35

SCDACTIV
at invocation 35

SELFNUCX 52, 53
at invocation 35

SPACE
setting 184

STOPNOP 153, 185, 186
at invocation 35

STOPSTMT 186
at invocation 36

SVC97 6, 42
at invocation 36

SWAP 49, 57, 63, 190
at invocation 36

SYSTEM
at invocation 37

TRACEALL 141, 179, 238
at invocation 37

TRANS 52

options (continued)
at invocation 37

UNFTDUMP
at invocation 37

OPTIONS command 132, 157
ORDER command 65, 158
OREGS command 158

P
PA1 key 55
PACK ASMLANGX option 260
PACKED command 158
parameter

variable
displaying list 159

parameter list
passed to IDF 21

parameter list passed to IDF 242
parameters

passing to CMS program 51
passing to TSO program 42
passing to z/OS batch program 44
passing to z/VSE program 59

PARMS command 159
PASSPGM option

at invocation 33
PATH option 38, 55, 69

at invocation 29
PATHFILE option 38, 69

at invocation 29
pattern matching a variable name 154
PAUSE command 159
PER 25

advantages and disadvantages of use 56
disabled 53
enabling 57
examining setting from within a macro 241
operating 67
performance impact 287

PER command 160
PF keys

commands invoked by 91
default settings 80
examining settings from within a macro 241
redefining 160
redefinition of 80
settings

displayed 160
PFK command 9, 160
PFKDISP command 160
PFM ASMLANGX option 260
PFT ASMLANGX option 261
PLOCATES command 161
pointer variable

displaying Located variables 161
extracting Located variables 242
obtaining Located variables 242

preparation
assembly 15

PRESERVE command 162
preserving

IDF settings 162
PREVIOUS command 162
PROFILE macro

invocation option overrides setting in macro 42
loading module and symbols 139

314 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

PROFILE macro (continued)
loading target program with LIBE 137
loading target program with LOAD 138
passing options as invocation parameters 21, 24
setting MODE 239
setting PSWSTEAL breakpoints 165
writing 203

PROFILE option 203
at invocation 33

PROGCHK command 163
PROGCK command 163
program build

requirements
HLASM 15

program checks
passing to CMS 33
passing to z/OS 33
passing to z/VSE 33

program debug
getting started 9

program preparation
getting started 9

programmed symbol sets
used by target program 57, 63

programmed symbol sets used by target program 49
PSW

changing from within a macro 179
modifying 68
obtaining contents from a macro 244
obtaining display of 68
stealing 58

PSW command 122
PSWSTEAL command 164, 226

Q
QQUIT command 167
QUALIFY command 165
QUIET ASMLANGX option 258
QUIET command 166
QUIETLY command 166
QUIT command 167
QWDUMP option

at invocation 34

R
R0-R15 commands 171
R1, flag byte 51
railroad track format, how to read xi
RCQUIT command 167
Read Buffer command 49
READ BUFFER command 57, 63
REFRESH command 168
registers

Access
change contents from a macro 174
display 96
initial contents 38
modifying 68
obtaining contents from a macro 224
obtaining display of 68

AR
referring to in expressions 81

Control
modifying 68

registers (continued)
Control (continued)

obtaining display of 68, 108
Floating Point

initial contents 38
FPC

changing contents from a macro 121
FPR

changing contents from a macro 121
initial contents 38
modifying 68
obtaining contents from a macro 244
obtaining display of 68, 158, 168

GPR
changing contents from a macro 122
initial contents 38
modifying 68
monitoring 66
obtaining contents from a macro 244
obtaining display of 68, 168
referring to in expressions 81

GPRG
changing contents from a macro 123

GPRH
changing contents from a macro 123

monitoring 94
determining registers from a macro 244

not displayed 45, 53
obtaining display of 158

REGS command 168
REGS64 command 168
REGSTOP

setting from within a macro 180
RegStops

availability of 57
REGSTOPS command 95
requirements

assembly 15
program build

HLASM 15
RESTORE command 169
restoring

IDF settings 169
RETRIEVE command 169
return codes

ASMLANGX 18
EXTRACT 223
passing at exit from IDF 167

REXX
commands available to 207
debugging CMS programs invoked by 55
debugging TSO programs invoked by 47
default ADDRESS 207
functions

debugging 6
functions, debugging 6
macros 116, 134
variables 116, 134

RIGHT command 169
RISK option 141, 179, 238

at invocation 34
RLOG command 80, 170, 196
RLOG option 80, 170
ROWSTYLE option

at invocation 34
RUN command 171
RUNEXIT command 171

Index 315

S
SALIMIT command 172
SAREGS command 172
SAREGS option

setting 172
SAVE command 162
saving

IDF settings 162
SBORDER option

at invocation 35
SCDACTIV option

at invocation 35
screen

customization 127
scroll

backward a window 162
forward a window 155

SCROLL command 133
scrolling

array display 126
LSM Information window 126
status display 126
structure display 126
union display 126
variable display 126

search
limits of 173
memory for a string 173

SEARCH command 173
self-load offset

setting 173
SELFNUCX command 173
SELFNUCX offset

controlling start offset with SELFNUCX 173
obtaining from macro 245
setting 173

SELFNUCX option 43, 52, 53
at invocation 35

SEQ ASMLANGX option 261
SET ADSTOP command 174
SET AREG command 174
SET BREAK command 175
SET COMMAND command 175
SET EXITEXEC command 176, 213

issuing before CMPEXIT option 215
SET GLOBAL command 177
SET GLOBAL STEM command 176
SET ICOUNT command 177
SET MODULE command 144
SET OFFSET command 177
SET OPTION command 178
SET PSW command 179
SET REGSTOP command 180
SET SIZE command 180
setting file mode 144
setting qualified module 165
settings

IDF Language Support
display 132

short name
how derived 115

SHOW command 181
simulating a program check 163
SIZE command 182
size of program

setting 180

skipped subroutines
examining from a macro 246
setting and clearing 184

SKIPSTEP command 39, 86, 153, 184
SKIPSTEPS

how to clear 76
source code

display
BOTH source and DISASM 124, 181
comments 124, 181
declarations 124, 181
DISASM only 124, 181
enabling 181
excluding 124
macro expansions 124, 181
positioning 100, 117, 135, 192
source line numbers 181
source only 124, 181
source statement numbers 181

locate string in 140
locating specific 116
search

forward 116, 140
ISPF editor style 116
reverse 116, 140
XEDIT style 140

source records
extraction 246
obtaining 246

SPACE command 184
SPACE option

setting 184
stack

IDF settings 162, 169
stacked items xii
statement numbers

source code
display 181

statement scope
extraction 244
obtaining 244

status
display

scrolling 133
display scrolling 126

STATUS command 133, 185
status information

extraction 235
Global Storage 123
obtaining 235, 243

STEM command 134
STEP command 185
STMTSTEP command 186
STOKEY command 187
STOPNOP option 153, 185, 186

at invocation 35
STOPSTMT option 186

at invocation 36
storage

allocation map
display 187
extraction 247
obtaining 247

displaying
in disassembly format 69, 111
in dump format 70, 113

examining from within a macro 237, 238

316 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

storage (continued)
key 187
modifying

from a macro 140, 141
from a window 4, 69, 73

storage areas
monitoring 94

STOREMAP command 187
string

locate 140
searching for 173

structure
based 87, 188
data attributes

obtaining 247
data display 188

obtaining 247
display

detail 111, 142
intermediate components 111
levels visible 111, 142
major component 142
scrolling 133

display scrolling 126
extraction 247
information

obtaining 247
STRUCTURE command 188
STXIT code

on z/VSE 62
STXIT OC 62
SUBSET

access to 52
SUBSET command 189
SUBSET, CMS

access to 52
substrings 89
subtasks

on z/VSE 61
SVC

obtaining trace status from macro 248
SVC command 189
SVC trapping

enabling and disabling from macro 189
SVC97 option 6, 42

at invocation 36
SWAP command 190
SWAP option 49, 57, 63, 190

at invocation 36
SYMBOL command 190
symbolic dump 71
symbols

dropping 113
user-defined 190

SYMBOLS 248
synonyms 126
syntax notation, description xi
SYSTEM option

at invocation 37

T
task information

display 191
extraction 249
obtaining 249

TASKS command 191

terminal
device address 31

TITLE command 191
title text of window 191
TOP command 192
TRACEALL option 141, 179, 238

at invocation 37
TRANS option 52

at invocation 37
Transient Area

programs, debugging 52
TRIGGER LOAD command 192
TSO

IKJSCAN 43
programs, debugging 44

TSO TEST
CP option 43

TSOEXEC 42, 45
type attributes

display 193
extraction 250
variable

display 193
obtaining 250

TYPE command 193

U
unformatted dump 71
UNFTDUMP option

at invocation 37
union

based 87, 188
data display 188
display

detail 111
intermediate components 111
levels visible 111

display scrolling 126
Union

display
detail 142
levels visible 142
major component 142

UNION command 193
UNTIL command 194
UP command 162

V
VALUE command 194
variable

based 87, 88
data address

obtaining 252
data attributes

display 193
obtaining 250, 251

data display 86, 195
obtaining 251, 252, 253

data location
obtaining 252

data value
obtaining 253

display
declarations 102, 107, 184

Index 317

variable (continued)
display (continued)

minimal 107
scrolling 126, 133
single line 107

display scrolling 126
extraction 250, 251, 252, 253
information

obtaining 250, 251, 252, 253
locator

displaying Located variables 161
extracting Located variables 242
obtaining Located variables 242

names
displaying list 154
extracting list 240

optimized
alteration 105

parameter
displaying list 159

pointer
displaying Located variables 161
extracting Located variables 242
obtaining Located variables 242

type attributes
display 193
obtaining 250

VARIABLE 86
VARIABLE command 195
variable data

format
bit variables 99
character variables 104
class 120
default 120
displaying 120
fixed variables 118
float variables 118
individual 120
inherited 120
packed decimal variables 158
Zoned decimal variables 200

Variables
REXX

set by EXTRACT command 219
VCHANGE command 196
VERSION command 134, 196
version of IDF

obtaining from macro 252
versions supported 5
VS command 196
VSEP command 197

W
WATCH command 197
watchpoints 197
WHERE command 199
windows

Additional Floating-Point Registers window 66
opening and closing 95

AdStops window 66
opening and closing 94, 95

as target of command 79
Break window 67

opening and closing 100, 109
closing 106

windows (continued)
controlling title text 191
Current Registers window 68, 168
Disassembly window 69, 111
Dump mode 70
Dump window 113

display previous data 98
Entry Point Names window 73
examples 77
LSM information 188
LSM Information window 74, 97, 195
maximizing 143
Minimized Windows Viewer 74
minimizing on the screen 143
moving 147
moving to top of screen 158
Old Registers window 76, 158
opening 156
Options window 75
refreshing contents 168
scrolling left 136
scrolling right 169
selecting 79
sizing 182
Skipped Subroutines window 76

opening and closing 184
summary of types 65
Target Status 185
Target Status window 77
Window Specification 79

writing macros 207

X
XA Exploitation

memory constrained environments 16
XEDEXIT command 199
XPATH command 135

Z
z/OS

data set conventions 41
DD conventions 41
optional data set file allocations 41
subtasking, applications that use 50

z/OS documents 293
z/OS programs

debugging 41
z/VM documents 293, 294
z/VSE

data set conventions 59
programs

debugging 59
z/VSE documents 294
z/VSE programs

debugging 59
ZONED command 200

318 HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide

����

GC26-8709-08

	Contents
	Figures
	About this book
	Syntax notation

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Part 1. What is IDF and how do I start using it?
	Chapter 1. Introduction to the Interactive Debug Facility
	Capabilities
	Execution control
	Symbol support
	Typeover storage modification
	Intelligent cursor sensing
	Screen swapping
	Record and playback
	Customization - profile and macros

	Where can I run IDF?
	Environments supported
	Limitations when debugging on TSO
	Limitations when debugging on CMS
	Limitations when debugging under z/VSE

	Chapter 2. Getting started with IDF
	Program preparation
	Program debug basics
	Sample debug session on TSO
	Sample program preparation
	Invoking IDF
	Invoking IDF with a TSO batch job

	Sample debug session on z/OS
	Invoking IDF with a batch job

	Sample debug session on CMS
	Sample program preparation
	Invoking IDF

	Sample debug session on z/VSE
	Sample program preparation
	Invoking IDF

	Running IDF on a sample program

	Part 2. Guide to using IDF
	Chapter 3. Using ASMLANGX to extract source-level information
	Assembly requirements
	Program build requirements
	Building a module on z/OS
	Building a module on CMS
	Building a phase on z/VSE

	Running ASMLANGX
	Extraction file allocation on z/OS
	Online language extraction on TSO
	Batch language extraction on z/OS
	Online language extraction on CMS
	Batch language extraction on z/VSE
	Which files to keep

	Return codes

	Chapter 4. Invoking IDF to debug your program
	Running IDF on TSO and CMS
	Running IDF via TSO batch job
	Running IDF via z/OS batch job
	Running IDF on z/VSE
	IDF options at invocation
	1ADSTOP (CMS only)
	AMODE24 | AMODE31 | AMODE64 (z/OS only)
	ASCII
	AUTOLOAD | NOAUTOLD
	AUTOSIZE | NOAUTOSZ
	BCX | NOBCX
	CKSUBCM
	CMDLOG
	CMPEXIT
	COLORS | COLOURS
	COMMAND
	DMSO (CMS only)
	EXITEXEC
	FASTPATH | PATH | PATHFILE
	FULLQUAL
	HEXDISP
	HEXINPUT
	IMPMACRO | NOIMPMAC
	INVPSW | NOINVPSW
	ISA (CMS only)
	LIBE (z/OS and CMS)
	LINE (CMS only)
	LUNAME (z/VSE and z/OS)
	LSMDEBUG
	MACROLOG
	MODE (CMS only)
	MODMAP | NOMODMAP (CMS only)
	NODSECTS
	NUCEXT (CMS only)
	OFFSET
	OLDBREAK
	PASSPGM
	PROFILE | NOPROFIL
	QWDUMP
	RISK
	RLOG
	ROWSTYLE
	SBORDER
	SCDACTIV
	SELFNUCX (CMS only)
	STOPNOP | NOSTOPNP
	STOPSTMT | NOSTOPST
	SVC97 | NOSVC97 (z/OS only)
	SWAP
	SYSTEM (CMS only)
	TRACEALL
	TRANS (CMS only)
	UNFTDUMP

	Initialization of general-purpose registers (GPRs)
	Initialization of floating point registers
	Initialization of access registers
	The PATH, FASTPATH, and PATHFILE options
	Using the PATH option
	Using the PATHFILE option
	Using the FASTPATH option
	Excluding called subroutines

	Chapter 5. Debugging programs on z/OS
	Data set naming conventions
	Optional data set file allocations
	Breakpoint method selection (TSO)
	SVC 97 breakpoints
	Invalid opcode breakpoints
	Specifying the breakpoint method

	Breakpoint method (z/OS batch)
	How to specify parameters for your program (TSO)
	The COMMAND option (TSO)

	How to specify parameters for your program (z/OS Batch)
	Loading programs (TSO)
	File allocation requirements
	The TSOEXEC command

	Programs requiring environmental setup (TSO)
	The COMMAND option

	TSO batch and z/OS batch job requirements
	Dynamically loaded programs (TSO)
	Programs invoked by REXX (TSO)
	ISPF applications (TSO)
	DB2 applications (TSO)
	Causing a break-in event (TSO)
	Your program's defined limits
	Programs performing full-screen I/O (TSO)
	Applications that use z/OS subtasking

	Chapter 6. Debugging programs on CMS
	Program preparation on CMS
	How to specify parameters for your program
	User-area programs
	CMS transient programs
	CMS nucleus extensions loaded explicitly
	Self-loading CMS nucleus extensions
	Programs requiring environmental setup
	The COMMAND option

	Dynamically loaded programs
	Programs invoked by REXX
	Programs declaring interrupt routines
	Causing a break-in event
	Your program's defined limits
	PER versus non-PER mode
	Programs performing full-screen I/O
	Using a message-trapping tool

	Chapter 7. Debugging programs on z/VSE
	Data set naming conventions
	How to specify parameters for your program
	Loading programs
	JCL requirements

	Dynamically loaded programs
	Running with subtasks
	Running with CICS
	Using ASMIDF to debug a CICS/VSE application
	Debugging STXIT code
	Causing a break-in event
	Your program's defined limits
	Programs performing full-screen I/O

	Chapter 8. Windows, PF keys, cursor positioning, and other operational details
	Windows
	AdStops window (CMS only)
	Additional Floating-Point Registers window
	Break window
	Current Registers window
	Disassembly window
	Dump window
	Entry Point Names window
	LSM Information window
	Minimized Windows Viewer
	Options window
	Old Registers window
	Skipped Subroutines window
	Target Status window
	Some examples of actual screens

	Specifying a window
	PF keys
	Command record and playback features
	Address expressions
	Addresses displayed by IDF
	Arguments and cursor positioning

	Chapter 9. Source-level debug additional capabilities
	Controlling single-stepping your program
	Displaying and changing items
	Variable expressions
	Variable scope
	Variable names
	Simple variables
	Aggregate variables
	Dot qualification
	Based variables
	Array indexing
	Substrings

	Displaying variable names
	Displaying CALLERS
	Source level support

	Chapter 10. Commands and operating procedures
	IDF commands cross-reference
	ABEND (CMS and z/OS)
	ADSTOP (CMS only)
	ADSTOPS (CMS only)
	AFPR
	ALARM
	ALET
	APROGMSG (CMS only)
	AREGS
	ARRAY
	AUDIT
	BACK
	BASE
	BINARY
	BIT
	BOTTOM
	BREAK
	BRIEF
	CALLERS
	CHARACTER
	CHECK
	CLOSE
	COLORS
	COMMAND
	COMPACT
	CREGS (CMS only)
	CURSOR
	DBREAK
	DETAIL
	DISASM
	DOWN
	DROP GLOBAL
	DROP MODULE
	DROP SYMBOLS
	DUMP
	DUMPMODE
	EPNAMES
	EPOFFSET
	EXITEXEC
	EXLIMIT
	FIND
	FIRST
	FIXED
	FLOAT
	FMT
	FOLLOW
	FORMAT
	FPC
	FPR
	GLOBALS
	GOTO
	GPACK
	GPR
	GPRG (z/OS only)
	GPRH (z/OS only)
	GSTATUS
	HIDE
	HISTORY
	ICOUNT
	KWDSYN
	LANGUAGE +
	LANGUAGE COLOR
	LANGUAGE COMMENTS
	LANGUAGE DEBUG
	LANGUAGE DECLARES
	LANGUAGE DROP
	LANGUAGE LOAD
	LANGUAGE MACROS
	LANGUAGE OPTIONS
	LANGUAGE SCROLL
	LANGUAGE STATUS
	LANGUAGE STEM
	LANGUAGE VERSION
	LANGUAGE XPATH (CMS and z/OS)
	LAST
	LASTMSG
	LEFT
	LIBE (CMS and z/OS)
	LOAD
	LOCATE
	LOCATION
	LOCATION ALET
	MACRO
	MAJOR
	MAP
	MAXIMIZE
	MINIMIZE
	MODE (CMS only)
	MODULE
	MODULE
	MODULE BASE
	MODULE SIZE
	MOVE
	MPACK
	MRUN
	MRUN invoked through address ASM on CMS

	MSG
	MSGID (CMS and z/OS)
	MSGMODE
	MSTATUS
	MSTEP
	NAMES
	NEXT
	OFFSET
	OPEN
	OPTIONS
	ORDER
	OREGS
	PACKED
	PARMS
	PAUSE
	PER (CMS only)
	PFK
	PFKDISP
	PLOCATES
	PRESERVE
	PREVIOUS
	PROGCHK (CMS only)
	PROGCK (CMS only)
	PSW
	PSWSTEAL (CMS only)
	QUALIFY
	QQUIT
	QUIET
	QUIETLY
	QUIT
	RCQUIT
	REFRESH
	REGS
	REGS64 (z/OS only)
	REGSTOPS (CMS only)
	RESTORE
	RETRIEVE
	RIGHT
	RLOG
	RUN
	RUNEXIT
	R0-R15
	SALIMIT
	SAREGS
	SAVE
	SEARCH
	SELFNUCX (CMS only)
	SET ADSTOP (CMS only)
	SET AREG
	SET BREAK
	SET COMMAND
	SET EXITEXEC
	SET GLOBAL STEM
	SET GLOBAL TEXT
	SET ICOUNT
	SET OFFSET
	SET OPTION
	SET PSW
	SET REGSTOP (CMS only)
	SET SIZE
	SHOW
	SIZE
	SKIPSTEP
	SPACE
	STATUS
	STEP
	STMTSTEP
	STOKEY
	STOREMAP
	STRUCTURE
	SUBSET (CMS only)
	SVC (CMS only)
	SWAP
	SYMBOL
	TASKS (TSO only)
	TITLE
	TOP
	TRIGGER LOAD
	TYPE
	UNION
	UNTIL
	UP
	VALUE
	VARIABLE
	VCHANGE
	VERSION
	VS
	VSEP
	WATCH
	WHERE
	XEDEXIT (CMS only)
	ZONED

	Part 3. Advanced topics, macros, profiles, exit routines
	Chapter 11. Writing an IDF profile
	When the PROFILE is executed
	Command restrictions related to PROFILE execution

	Chapter 12. Writing IDF macros
	REXX linkage considerations
	The REXX ADDRESS statement
	Initial or default ADDRESS environment
	Overriding the default ADDRESS Environment
	Saving and restoring an ADDRESS environment
	Example macros
	EX
	REGS
	SYSCMD

	Chapter 13. The IDF exit routine
	Naming the exit routine
	Controlling exit routine processing
	Passing the reason for invocation
	Looking at the address
	Ignoring the event
	Other techniques
	Writing a compiled-language IDF exit routine
	Specifying that an exit routine is compiled code
	Requirements for compiled-language exit routines

	Chapter 14. REXX variables available to macros
	REXX variables with fixed names
	REXX variables with variable names

	Chapter 15. The EXTRACT command
	Return codes
	ADSTOPS (CMS only)
	ALET
	AREGS
	ARGUMENT | ARGS
	ARRAY
	BREAK
	CALLERS
	CMDMSG
	COLORS
	CURSOR
	Symbolic addresses

	DISASM
	EVENT
	EXITEXEC
	GLOBAL
	GLOBAL STEM
	GLOBAL STEMS
	GSTATUS
	ICOUNT
	LANGUAGE ARGUMENTS | ARGS
	LANGUAGE COMMANDS | CMDS
	LANGUAGE OPTIONS
	LANGUAGE STATUS
	LANGUAGE STEM
	LANGUAGE VERSION
	LASTMSG
	LOAD
	LOCATION
	LOCATION ALET
	MAP
	MODE (CMS only)
	MODULES
	MSTATUS
	NAMES
	OPTIONS
	PER (CMS only)
	PFK
	PLIST
	PLOCATES
	QUALIFY
	QUERY SETTING
	REGS
	REGSTOPS (CMS only)
	SCOPE
	SCRVAR
	SELFNUCX
	SKIPSTEP
	SOURCE
	STOREMAP
	STRUCTURE
	SVC (CMS only)
	SYMBOLS
	TASKS
	TYPE
	UNION
	VALUE
	VARIABLE
	VDECLARE | VDCL
	VERSION
	VLOC
	VVALUE
	WINDOWS

	Part 4. Appendixes
	Appendix A. ASMLANGX options
	ASM
	CONDASM | NOCONDASM
	DCL | NODCL
	DEBUG
	ERROR
	IFM (CMS only)
	INCL | NOINCL
	LOUD | QUIET
	MACDEF | NOMACDEF
	OFM (CMS only)
	OFN
	OFT
	PACK | NOPACK
	PFM (CMS only)
	PFT
	SEQ | NOSEQ

	Appendix B. Diagnostic messages
	Message numbers and severity levels
	ASMLKEDT messages (z/VSE only)
	IDF Language Support messages
	IDF base debugger messages
	ADATA extraction utility messages

	Appendix C. Abbreviations
	Appendix D. Performance considerations
	Appendix E. Migrating from TSO/E TEST to IDF
	General considerations
	Invoking the target program
	Specifying the target program parameters

	Notices
	Trademarks

	Bibliography
	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

